Subscribe Now Subscribe Today
Research Article
 

Hypoglycemic Effect of Hazelnut and its Effect on Some Sex Hormones in Alloxan Induced Diabetic in Female Rats



Abeer, E. El-Khamisy and Amr, A. Rezq
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Hazelnut is the second richest source of monounsaturated fatty acids among nuts and is rich in vitamins E and B6, phytosterols, folate, L-arginine, polyphenols and fiber. The present study aimed to investigate the hypoglycemic effect of hazelnut and its effect on some sex hormones in diabetic female rats. Animals were randomly assigned to five groups of equal number and weight. Group I, kept as a normal control group; Group II, kept as a diabetic control group, Groups III, IV and V, kept as diabetic groups and feeding supplemented diet with 5, 10 and 15% hazelnuts, respectively. Supplemented diet with 10% and 15% of hazelnut significantly lower food intake compare to the positive control group. Body weight gain significantly increased in treated diabetic group compare with the positive control group. Feeding supplemented diet with hazelnut at the three different levels caused significantly lower in concentrations of blood glucose, total lipids, triglycerides, total cholesterol, AST, ALT, blood urea nitrogen, uric acid and creatinine and significantly lower in levels of insulin, thyroid stimulating, follicle-stimulating and luteinizing hormones compared to that of untreated diabetic rats. Histological study showed hypertrophy and hyperplasia in beta-cells of islets of langerhans associated with pyknosis of their nuclei in positive control rats. Slight hypertrophy in islets of langerhans and congestion of pancreatic blood vessel was showed in pancreas sections of treated rats with 5 and 10% of hazelnut, respectively. However, rats treated with 15% of hazelnut showed apparent normal histological structure. Ovary sections of positive control rats showed dilation and congestion of blood vessel as well as interstitial connective tissue proliferation. Interstitial cells hyperplasia and follicles were showed in ovary of treated rats with 5 and 10% of hazelnut, respectively. Primary oocytes were showed in ovary sections of treated rats with 15% of hazelnut. In conclusions, hazelnut can be readily incorporated into healthy diet to its healthy effect benefits in diabetes and its complication.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Abeer, E. El-Khamisy and Amr, A. Rezq, 2013. Hypoglycemic Effect of Hazelnut and its Effect on Some Sex Hormones in Alloxan Induced Diabetic in Female Rats. Pakistan Journal of Nutrition, 12: 229-238.

DOI: 10.3923/pjn.2013.229.238

URL: https://scialert.net/abstract/?doi=pjn.2013.229.238

REFERENCES
1:  Alasalvar, C., F. Shahidi and K.R. Cadwallader, 2003. Comparison of natural and roasted Turkish Tombul hazelnut (Corylus avellana L.) volatiles and flavor by DHA/GC/MS and descriptive sensory analysis. J. Agric. Food Chem., 51: 5067-5072.
CrossRef  |  

2:  Alasalvar, C., J.S. Amaral and F. Shahidi, 2006. Functional lipid characteristics of Turkish Tombul hazelnut (Corylus avellana L.). J. Agric. Food Chem., 54: 10177-10183.
CrossRef  |  

3:  American Diabetes Association, 2007. Diagnosis and classification of diabetes mellitus. Diabetes Care, 30: S42-S47.
CrossRef  |  Direct Link  |  

4:  Fernandes, A.A.H., E.L.B. Novelli, A. Fernandes Jr. and C.M. Galhardi, 2009. Effect of naringerin on biochemical parameters in the streptozotocin-induced diabetic rats. Braz. Arch. Biol. Technol., 52: 51-59.
Direct Link  |  

5:  Anderson, J.W., P. Baird, R.H. Davis Jr., S. Ferreri and M. Knudtson et al., 2009. Health benefits of dietary fiber. Nutr. Rev., 67: 188-205.
CrossRef  |  Direct Link  |  

6:  Ballester, J., M.C. Munoz, J. Dominguez, M.J. Palomo and M. Rivera et al., 2007. Tungstate administration improves the sexual and reproductive function in female rats with streptozotocin-induced diabetes. Hum. Reprod., 22: 2128-2135.
CrossRef  |  

7:  Bansal, V., J. Kalita and U.K. Misra, 2006. Diabetic neuropathy. Postgrad. Med. J., 82: 95-100.
CrossRef  |  Direct Link  |  

8:  Bolkent, S., R. Yanardag, O. Karabulut-Bulan and Ozsoy-Sacan, 2004. The morphological and biochemical effects of glibornuride on rat liver in experimental diabetes. Hum. Exp. Toxicol., 23: 257-264.
Direct Link  |  

9:  Brown, L., B. Rosner, W.W. Willett and F.M. Sacks, 1999. Cholesterol-lowering effects of dietary fiber: A meta-analysis. Am. J. Clin. Nutr., 69: 30-42.
Direct Link  |  

10:  Brown, A.A. and F.B. Hu, 2001. Dietary modulation of endothelial function: implications for cardiovascular disease. Am. J. Clin. Nutr., 73: 673-686.
Direct Link  |  

11:  Buko, V., O. Lukivskayam, V. Nikitin, Y. Tarasov, L. Zavodnik, A. Borodinsky and B. Gorenshtein, 1996. Hepatic and pancreatic effects of olyenoyl-phosphatidylcholine in rats with alloxan-induced diabetes. Cell Biochem. Funct., 14: 131-137.

12:  Carleton, H., 1979. Histological Techniques. 4th Edn., Oxford University Press, New York, USA., pp: 267.

13:  Choi, C.W., S.C. Kim, S.S. Hwang, B.K. Choi and H.J. Ahn et al., 2002. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci., 163: 1161-1168.
CrossRef  |  Direct Link  |  

14:  Cooke, J.P. and P.S. Tsao, 1997. Arginine: A new therapy for atherosclerosis? Circulation, 95: 311-312.

15:  Daniel, R.S., K.S. Devi, K.T. Augusti and C.R.S. Nair, 2003. Mechanism of action of antiatherogenic and related effects of Ficus bengalensis Linn. flavonoids in experimental animals. Indian J. Exp. Biol., 41: 296-303.
PubMed  |  Direct Link  |  

16:  Earle, K.A., D. Harry and K. Zitouni, 2008. Circulating cholesterol as a modulator of risk for renal injury in patients with type 2 diabetes. Diabetes Res. Clin. Pract., 79: 68-73.
CrossRef  |  

17:  Elin, R.J. and J.M. Hosseini, 1993. Is the magnesium content of nuts a factor for coronary heart disease? Arch. Internal Med., 153: 779-780.
PubMed  |  

18:  Eliza, J., P. Daisy, S. Ignacimuthu and V. Duraipandiyan, 2009. Normo-glycemic and hypolipidemic effect of costunolide isolated from Costus speciosus (Koen ex. Retz.)Sm. in streptozotocin-induced diabetic rats. Chem. Biol. Interact., 179: 329-334.
CrossRef  |  Direct Link  |  

19:  Farombi, E.O. and O.O. Ige, 2007. Hypolipidemic and antioxidant effects of ethanolic extract from dried calyx of Hibiscus sabdariffa in alloxan-induced diabetic rats. Fundam. Clin. Pharmacol., 21: 601-609.
CrossRef  |  Direct Link  |  

20:  Feldman, E.B., 2002. The scientific evidence for a beneficial health relationship between walnuts and coronary heart disease. J. Nutr., 132: 1062S-1101S.
Direct Link  |  

21:  Florkowski, C.M., 2002. Management of co-existing diabetes mellitus and dyslipidemia. Am. J. Cardiovasc. Drugs, 2: 15-21.
CrossRef  |  Direct Link  |  

22:  Franz, M.J., J.P. Bantle, C.A. Beebe, J.D. Brunzell and J.L. Chiasson et al., 2002. Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care, 25: 148-198.
CrossRef  |  Direct Link  |  

23:  Garg, A., A. Bonnie, S.M. Grundy, Z.J. Zhang and R.H. Unger, 1988. Comparison of a high-carbohydrate diet with a high-monounsaturated-fat diet in patients with non-insulin-dependent diabetes mellitus. N. Engl. J. Med., 319: 829-834.
CrossRef  |  Direct Link  |  

24:  Granner, D.K., 1996. Hormones of the Pancreas and Gastrointestinal Tract. In: Harper's Biochemistry, Murray, R.K., R.K. Granner, P.A. Mayes and V.W. Rodwell (Eds.). 24th Edn., Appleton and Lange, USA., pp: 586-587.

25:  Griel, A.E. and P.M. Kris-Etherton, 2006. Tree nuts and the lipid profile: A review of clinical studies. Br. J. Nutr., 96: S68-S78.
Direct Link  |  

26:  Hamden, K., S. Carreau, M.A. Boujbiha, S. Lajmi, D. Aloulou, D. Kchaou and A. Elfeki, 2008. Hyperglycaemia, stress oxidant, liver dysfunction and histological changes in diabetic male rats pancreas and liver: Protective effect of 17β-estradiol. Steroids, 73: 495-501.
CrossRef  |  

27:  Hemalatha, S., A.K. Wahi, P.N. Singh and J.P.N. Chansouria, 2004. Hypoglycemic activity of Withania coagulans Dunal in streptozotocin induced diabetic rats. J. Ethnopharmacol., 93: 261-264.
CrossRef  |  Direct Link  |  

28:  Jarald, E.E., S.B. Joshi and D.C. Jain, 2008. Antidiabetic activity of aqueous extract and non polysaccharide fraction of Cynodon dactylon Pers. Indian. J. Exp. Bio., 46: 660-667.
PubMed  |  

29:  Jenkins, D.J., J.M. Wong, C.W. Kendall, A. Esfahani and V.W. Ng et al., 2009. The effect of a plant-based low-carbohydrate (Eco-Atkins) diet on body weight and blood lipid concentrations in hyperlipidemic subjects. Arch. Int. Med., 169: 1046-1054.
CrossRef  |  

30:  Jiang, G.Y., 1996. Practical Diabetes. 1st Edn., People's Health Publishing House, Beijing, China, pp: 295-296.

31:  Kaneto, H., G. Xu, K.H. Song, K. Suzuma, S. Bonner-Weir, A. Sharma and G.C. Weir, 2001. Activation of the hexosamine pathway leads to deterioration of pancreatic β-cell function through the induction of oxidative stress. J. Biol. Chem., 276: 31099-31104.
CrossRef  |  Direct Link  |  

32:  Khaki, A., M. Nouri, F. Fathiazad, H.R. Ahmadi-Ashtiani, H. Rastgar and S. Rezazadeh, 2009. Protective effects of quercetin on spermatogenesis in streptozotocin-induced diabetic rat. J. Med. Plants, 8: 57-64.
Direct Link  |  

33:  Kishore, A., G.K. Nampurath, S.P. Mathew, R.T. Zachariah and B.K. Potu et al., 2009. Antidiabetic effect through islet cell protection in streptozotocin diabetes: A preliminary assessment of two thiazolidin-4-ones in Swiss albino mice. Chem. Biol. Interact., 177: 242-246.
CrossRef  |  

34:  Klevay, L.M., 1993. Copper in nuts may lower heart disease risk. Arch. Internal Med., 153: 401-402.
PubMed  |  

35:  Verma, L., A. Khatri, B. Kaushik, U.K. Patil and R.S. Pawar, 2010. Antidiabetic activity of Cassia occidentalis (Linn) in normal and alloxan-induced diabetic rats. Indian J. Pharmacol., 42: 224-228.
CrossRef  |  

36:  Lyra, R., M. Oliveira, D. Lins and N. Cavalcanti, 2006. Prevention of type 2 diabetes mellitus. Arquivos Brasileiros Endocrinologia Metabologia, 50: 239-249.
CrossRef  |  Direct Link  |  

37:  Mallick, C., S. Mandal, B. Barik, A. Bhattacharya and D. Ghosh, 2007. Protection of testicular dysfunctions by MTEC, a formulated herbal drug, in streptozotocin induced diabetic rat. Biol. Pharmaceut. Bull., 30: 84-90.
CrossRef  |  Direct Link  |  

38:  Marles, R.J. and N.R. Farnsworth, 1996. Antidiabetic plants and their active constituents: An update. Prot. J. Botanic. Med., 1: 85-111.

39:  Medina, J. and R. Moreno-Otero, 2005. Pathophysiological basis for antioxidant therapy in chronic liver disease. Drugs, 65: 2445-2461.
PubMed  |  Direct Link  |  

40:  Mendoza, J.A., A. Drewnowski, A. Cheadle and D.A. Christakis, 2006. Dietary energy density is associated with selected predictors of obesity in U.S. children. J. Nut., 136: 1318-1322.
PubMed  |  Direct Link  |  

41:  Oksanen, A., 1975. Testicular lesions of streptozotocin diabetic rats. Horm. Res., 6: 138-144.
PubMed  |  

42:  Orth, J.M., F.T. Murray and C.W. Bardin, 1979. Ultrastructural changes in Leydig cells of streptozotocininduced diabetic rats. Anatomical Rec., 195: 415-428.
CrossRef  |  

43:  Rosario, P.W., 2010. Normal values of serum IGF-I in adults: Results from a Brazilian population. Arq. Bras. Endocrinol. Metabol., 45: 477-481.
PubMed  |  Direct Link  |  

44:  Reeves, P.G., F.H. Nielsen and G.C. Fahey Jr., 1993. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 123: 1939-1951.
CrossRef  |  PubMed  |  Direct Link  |  

45:  Rimm, E.B. and M.J. Stampfer, 1997. The role of antioxidants in preventive cardiology. Curr. Opin. Cardiol., 12: 188-194.
PubMed  |  Direct Link  |  

46:  Sabate, J., 2003. Nut consumption and body weight. Am. J. Clin. Nutr., 78: 647-650.
Direct Link  |  

47:  Sabate, J., K. Oda and E. Ros, 2010. Nut consumption and blood lipid levels: A pooled analysis of 25 intervention trials Arch Intern. Med., 170: 821-827.
CrossRef  |  PubMed  |  

48:  Salmeron, J., F.B Hu, J.E. Manson, M.J. Stampfer, G.A. Colditz, E.B. Rimm and W.C. Willett, 2001. Dietary fat intake and risk of type 2 diabetes in women. Am. J. Clin. Nutr., 73: 1019-1026.
Direct Link  |  

49:  Shah, S.V., R. Baliga, M. Rajapurkar and V.A. Fonseca, 2007. Oxidants in chronic kidney disease. J. Am. Soc. Nephrol., 18: 16-28.
CrossRef  |  

50:  Sharma, S.B., A. Hasir, K.M. Prabhu, P.S. Murthy and G. Dwv, 2003. Hypoglycemic and hypolipidemic effect of ethanolic extracts of seeds of Eugeneia Jambolona in alloxan-induced Diabetic rabbits. J. Ethnopharmacol., 85: 201-206.

51:  Sheridan, M.J., J.N. Cooper, M. Erario and C.E. Cheifetz, 2007. Pistachio nut consumption and serum lipid levels. J. Am. Coll. Nutr., 26: 141-148.
CrossRef  |  Direct Link  |  

52:  Wang, S.C., S.F. Lee, C.J. Wang, C.H. Lee, W.C. Lee and H.J. Lee, 2011. Aqueous extract from Hibiscus sabdariffa Linnaeus ameliorate diabetic nephropathy via regulating oxidative status and Akt/Bad/14-3-3γ in an experimental animal model. Evidence-Based Complement. Altern. Med. 10.1093/ecam/nep181

53:  Singh, D.K., P. Winocour and K. Farrington, 2008. Mechanisms of disease: The hypoxic tubular hypothesis of diabetic nephropathy. Nat. Clin. Pract. Nephrol., 4: 216-226.
CrossRef  |  

54:  Steinberg, D. and A. Lewis, 1997. Oxidative modification of LDL and atherogenesis. Circulation, 95: 1062-1071.
CrossRef  |  PubMed  |  Direct Link  |  

55:  Sudha, S., G. Valli, P.M. Julie, J. Arunakaran, P. Govindarajulu and K. Balasubramanian, 2000. Influence of streptozotocin-induced diabetes and insulin treatment on the pituitary-testicular axis during sexual maturation in rats. Exp. Clin. Endocrinol. Diabetes, 108: 14-20.
PubMed  |  

56:  Tey, S.L., R.C. Brown, A.W. Chisholm, C.M. Delahunty, A.R. Gray and S.M. Williams, 2010. Effects of different forms of hazelnuts on blood lipids and α-tocopherol concentrations in mildly hypercholesterolemic individuals. Eur. J. Clin. Nutr., 65: 117-124.
CrossRef  |  

57:  Trevisan, M., V. Krogh, J. Freudenheim, A. Blake and P. Muti et al., 1990. Consumption of olive oil, butter and vegetable oils and coronary heart disease risk factors. J. Am. Med. Assoc., 263: 688-692.
CrossRef  |  

58:  Uladimir, O.M., 2003. Coronary risk factor. J. Diabet. Assoc. India, 29: 3-8.

59:  Weststrate, J.A. and G.W. Meijer, 1998. Plant sterol-enriched margarines and reduction of plasma total- and LDL-cholesterol concentrations in normocholesterolaemic and mildly hypercholesterolaemic subjects. Eur. J. Clin. Nutr., 52: 334-343.
PubMed  |  

60:  Willett, W.C., 1998. Is dietary fat a major determinant of body fat? Am. J. Clin. Nutr., 67: 556-562.

61:  Young, D.S., 2001. Effects of Disease on Clinical Lab Tests. 4th Edn., AACC Press, Washington, DC., USA.

©  2020 Science Alert. All Rights Reserved