Subscribe Now Subscribe Today
Research Article
 

Review on Moving Bed Biofilm Processes



Yang Qiqi, He Qiang and Husham T. Ibrahim
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

The aim of this study is to present the Moving Bed Biofilm (MBB) technology as an alternative and successful method to treating different kinds of effluents under different conditions. In the past few years this technology has become more common and widely used in the world because the need for clean water is rapidly increasing as the world’s population grows by each year, so many wastewater treatment facilities are needed to being expanded to provide additional capacity with least possible cost. This review covered the most important processes on MBB such as basic treatment process, kinetics of biofilm, growth and detachment of particles, modeling of MBB and affecting of carrier type and filling ratio. The review also includes many relevant researches carried out at the laboratory and pilot scales.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Yang Qiqi, He Qiang and Husham T. Ibrahim, 2012. Review on Moving Bed Biofilm Processes. Pakistan Journal of Nutrition, 11: 804-811.

DOI: 10.3923/pjn.2012.804.811

URL: https://scialert.net/abstract/?doi=pjn.2012.804.811

REFERENCES
1:  Ahl, R.M., T. Leiknes and H. Odegaard, 2006. Tracking particle size distributions in a moving bed biofilm membrane reactor for treatment of municipal wastewater. Water Sci. Technol., 53: 33-42.
PubMed  |  

2:  Andreottola, G., P. Foladori, M. Ragazzi and R. Villa, 2002. Dairy wastewater treatment in a moving bed biofilm reactor. Water Sci. Technol., 45: 321-328.
Direct Link  |  

3:  Boltz, J.P. and E.J.L. Motta, 2007. Kinetics of particulate organic matter removal as a response to bioflocculation in aerobic biofilm reactors. Water Environ. Res., 79: 725-735.
PubMed  |  

4:  Boltz, J.P., B.R. Johnson, G.T. Daigger and J. Sandino, 2009. Modeling integrated fixed-film activated sludge and moving-bed biofilm reactor systems I: Mathematical treatment and model development. Water Environ. Res., 81: 555-575.
PubMed  |  

5:  Boltz, J.P. and G.T. Daigger, 2010. Uncertainty in bulk-liquid hydrodynamics and biofilm dynamics creates uncertainties in biofilm reactor design. Water Sci. Technol., 61: 307-316.
CrossRef  |  

6:  Briones, A. and L. Raskin, 2003. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr. Opin. Biotechnol., 14: 270-276.
CrossRef  |  

7:  Canziani, R., V. Emondi, M. Garavaglia, F. Malpei, E. Pasinetti and G. Buttiglieri, 2006. Effect of oxygen concentration on biological nitrification and microbial kinetics in a cross-flow membrane bioreactor (MBR) and moving-bed biofilm reactor (MBBR) treating old landfill leachate. J. Membr. Sci., 286: 202-212.
CrossRef  |  

8:  Chan, Y.J., M.F. Chong, C.L. Law and D.G. Hassell, 2009. A review on anaerobic-aerobic treatment of industrial and maniciple wastewater. Chem. Eng. J., 155: 1-18.
CrossRef  |  

9:  Chen, S., D. Sun and J.S. Chung, 2008. Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic-aerobic moving-bed biofilm reactor system. Waste Manage., 28: 339-346.
CrossRef  |  

10:  Confer, D.R. and B.E. Logan, 1998. Location of protein and polysaccharide hydrolytic activity in suspended and biofilm wastewater cultures. Water Res., 32: 31-38.
CrossRef  |  

11:  Di Trapani, D., G. Mannina, M. Torregrossa and G. Viviani, 2008. Hybrid moving bed biofilm reactors: A pilot plant experiment. Water Sci. Technol., 57: 1539-1545.
CrossRef  |  

12:  Di Trapani, D., H. Odegaard and G. Viviani, 2008. Municipal wastewater treatment in a hybrid activated sludge/biofilm reactor: A pilot plant experience. Proceedings of the 1st IWA National Young Water Professional Conference, April 9-11, 2008, Mexico City, Mexico -.

13:  Dimock, R. and E. Morgenroth, 2006. The influence of particle size on microbial hydrolysis of protein particles in activated sludge. Water Res., 40: 2064-2074.
CrossRef  |  

14:  Falletti, L. and L. Conte, 2007. Upgrading of activated sludge wastewater treatment plants with hybrid moving-bed biofilm reactors. Ind. Eng. Chem. Res., 46: 6656-6660.
CrossRef  |  

15:  Flemming, H.C. and J. Wingender, 2001. Relevance of microbial Extracellular Polymeric Substances (EPSs)-Part I: Structural and ecological aspects. Water Sci. Technol., 43: 1-8.
PubMed  |  Direct Link  |  

16:  Germain, E., L. Bancroft, A. Dawson, C. Hinrichs, L. Fricker and P. Pearce, 2007. Evaluation of hybrid processes for nitrification by comparing MBBR/AS and IFAS configurations. Water Sci. Technol., 55: 43-49.
CrossRef  |  

17:  Goel, R., T. Mino, H. Satoh and T. Matsuo, 1999. Modeling hydrolysis processes considering intracellular storage. Water Sci. Technol., 39: 97-105.
CrossRef  |  

18:  Golla, P.S., M.P. Reddy, M.K. Simms and T.J. Laken, 1994. Three years of full-scale captorR process operation at Moundsville WWTP. Water Sci. Technol., 29: 175-181.
Direct Link  |  

19:  Hagman, M. and J.L.C. Jansen, 2007. Oxygen uptake rate measurements for application at wastewater treatment plants. Vatten, 63: 131-138.
Direct Link  |  

20:  Haldane, G.M. and B.E. Logan, 1994. Molecular size distributions of a macromolecular polysaccharide (Dextran) during its biodegradation in batch and continuous cultures. Water Res., 28: 1873-1878.
Direct Link  |  

21:  Henze, M., P. Harremoes, J.L.C. Jansen and E. Arvin, 1997. Wastewater Treatment: Biological and Chemical Processes. 2nd Edn., Springer Verlag, Lyngby, Denmark.

22:  Insel, G., D. Orhon and P.A. Vanrolleghem, 2003. Identification and modeling of aerobic hydrolysis-application of optimal experimental design. J. Chem. Technol. Biotechnol., 78: 437-445.
CrossRef  |  

23:  Jonstrup, M., M. Murto and L. Bjornsson, 2010. Compendium in Environmental Biotechnology. Lunds Tekniska Hogskola, Lund, Sweden.

24:  La Motta, E.J., J.A. Jimenez, J.C. Josse and A. Manrique, 2004. The role of bioflocculation on COD removal in the solids contact chamber of the TF/SC process. J. Environ. Eng., 130: 726-735.

25:  Larsen, T.A., 1992. Degradation of Colloidal Organic Matter in Biofilm Reactors. Department of Environmental Engineering, Technical University of Denmark, Denmark, ISBN: 9788789220086, Pages: 141.

26:  Levstek, M. and I. Plazl, 2009. Influence of carrier type on nitrification in the moving-bed biofilm process. Water Sci. Technol., 59: 875-882.
CrossRef  |  

27:  Mannina, G. and G. Viviani, 2009. Hybrid moving bed biofilm reactors: An effective solution for upgrading a large wastewater treatment plant. Water Sci. Technol., 60: 1103-1116.
CrossRef  |  

28:  Tchobanoglous, G., F.L. Burton and H.D. Stensel, 2004. Wastewater Engineering: Treatment and Reuse. 4th Edn., McGraw-Hill, New York, ISBN: 9780071241403, Pages: 1819.

29:  Ngo, H.H., W. Guo and W. Xing, 2008. Evaluation of a novel sponge-submerged membrane bioreactor (SSMBR) for sustainable water reclamation. Bioresour. Technol., 99: 2429-2435.
CrossRef  |  

30:  Odegaard, H., B. Rusten and T. Westrum, 1994. A new moving bed biofilm reactor-applications and results. Water Sci. Technol., 29: 157-165.
Direct Link  |  

31:  Odegaard, H., B. Rusten and J. Siljudalen, 1999. The development of the moving bed biofilm process-from idea to commercial product. Eur. Wat. Manage., 2: 36-43.

32:  Odegaard, H., B. Gisvold and J. Strickland, 2000. The influence of carrier size and shape in the moving bed biofilm process. Water Sci. Technol., 41: 383-391.
Direct Link  |  

33:  Odegaard, H., 2006. Innovations in wastewater treatment: The moving bed biofilm process. Water Sci. Technol., 53: 17-33.
PubMed  |  Direct Link  |  

34:  Pastorelli, G., R. Canziani, L. Pedrazzi and A. Rozzi, 1999. Phosphorus and nitrogen removal in moving-bed sequencing batch biofilm reactors. Water Sci. Technol., 40: 169-176.
CrossRef  |  

35:  Randall, C.W. and D. Sen, 1996. Full-scale evaluation of an integrated fixed-film activated sludge (IFAS) process for enhanced nitrogen removal. Water Sci. Technol., 33: 155-162.
CrossRef  |  

36:  Donlan, R.M. and J.W. Costerton, 2002. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev., 15: 167-193.
CrossRef  |  PubMed  |  Direct Link  |  

37:  Sombatsompop, K., C. Visvanathan and R. Ben Aim, 2006. Evaluation of biofouling phenomenon in suspended and attached growth membrane bioreactor systems. Desalination, 201: 138-149.
CrossRef  |  

38:  Sriwiriyarat, T. and C.W. Randall, 2005. Evaluation of integrated fixed film activated sludge wastewater treatment processes at high mean cells residence time and low temperatures. J. Environ. Eng., 131: 1550-1556.
CrossRef  |  

39:  Trapani, D.D., G. Mannina, M. Torregrossa and G. Viviani, 2010. Quantification of kinetic parameters for heterotrophic bacteria via respirometry in a hybrid reactor. Water Sci. Technol., 61: 1757-1766.
CrossRef  |  

40:  Valdivia, A., S. Gonzalez-Martinez and P.A. Wilderer, 2007. Biological nitrogen removal with three different SBBR. Water Sci. Technol., 55: 245-254.
CrossRef  |  

41:  Wanner, O., H. Eberl, E. Morgenroth, D. Noguera, C. Picioreanu, B. Rittmann and M.C.M. van Loosdrecht, 2006. Mathematical Modeling of Biofilms. IWA Publishing, London, UK., pp: 178.

42:  Xiao, G.Y. and J. Ganczarczyk, 2006. Structural features of biomass in a hybrid MBBR reactor. Environ. Technol., 27: 289-298.
CrossRef  |  

43:  Yang, S., F. Yang, Z. Fu, T. Wang and R. Lei, 2010. Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment. J. Hazard. Mat., 175: 551-557.
CrossRef  |  

44:  Zhao, Y., D. Cao, L. Liu and W. Jin, 2006. Municipal wastewater treatment by moving-bed-biofilm reactor with diatomaceous earth as carriers. Water Environ. Res., 78: 392-396.
CrossRef  |  

©  2020 Science Alert. All Rights Reserved