Subscribe Now Subscribe Today
Research Article
 

Activity of Specific mRNAs in Early Development of Xenopus and Rana Embryos



Anna S. Voronina and Elena S. Pshennikova
 
ABSTRACT

After transcription, processing and transport to the cytoplasm the mRNA may become a subject of various factors which activate or repress its translation. This work aimed to determine the start time of translation of mRNAs stored in the egg or transcribed from the zygote genome. The polyribosome/ informosomes ratio served as a criterion of mRNA involvement in translation. Here we used cesium chloride density gradient centrifugation to study the distribution of Xwnt-11, Xnot-2, Xbra and Xgsc mRNAs between polyribosomes and informosomes in the eggs and early embryos of Xenopus laevis and Rana temporaria. Present results gave evidence that specific mRNAs which encode proteins participating in dorsoventral differentiation, follow individual dynamics of activation and inactivation.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Anna S. Voronina and Elena S. Pshennikova , 2006. Activity of Specific mRNAs in Early Development of Xenopus and Rana Embryos. Journal of Biological Sciences, 6: 115-120.

DOI: 10.3923/jbs.2006.115.120

URL: https://scialert.net/abstract/?doi=jbs.2006.115.120

REFERENCES
Dabagyan, N.V. and A.A. Sleptsova, 1975. Rana temporaria L. In: Objects of Developmental Biology, Detlaf, T.A. (Ed.). Moscow Nauka, Russian, pp: 442-462.

Detlaf, T.A. and T.B. Rudneva, 1975. Xenopus laevis Daudin. In: Objects of Developmental Biology, Detlaf, T.A. (Ed.). Moscow Nauka, Russian, pp: 392-441.

Feinberg, A.P. and B. Vogelstein, 1984. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Addendum. Anal. Biochem., 137: 266-267.
PubMed  |  

Fritz, B.R. and M.D. Sheets, 2001. Regulation of the mRNAs encoding proteins of the BMP signaling pathway during the maternal stages of Xenopus development. Dev. Biol., 236: 230-243.
CrossRef  |  

Richter, J.D., 1999. Cytoplasmic polyadenylation in development and beyond. Microbiol. Mol. Biol. Rev., 63: 446-456.
PubMed  |  

Schroeder, K.E., M.L. Condic, L.M. Eisenberg and H.J. Yost, 1999. Spatially regulated translation in embryos asymmetrc expression of maternal Wnt 11 along the dorsal ventral axis in Xenopus. Dev. Biol., 214: 288-288.
CrossRef  |  

Shatilov, D.V., E.S. Pshennikova and A.S. Voronina, 2003. Transition of Xwnt-11 mRNA from inactive form to polyribosomes in frogs during early embryogenesis. Biochemistry (Moscow), 68: 822-825.
Direct Link  |  

Spirin, A.S., 1969. Informosomes. Eur. J. Biochem., 10: 20-35.

Voronina, A.S. and A.A. Preobrazhensky, 1994. Developmental expression of glial fibrillary acidic protein gene in human embryos. Neurosci. Lett., 174: 198-200.
Direct Link  |  

Voronina, A.S. and A.G.O. Gadzhiev, 1987. On the structure of heavy informosomes from loach embryos. Biokhimiya (Rus), 52: 1130-1132.

Voronina, A.S. and E.S. Potekhina, 1999. Translational regulation of synthesis of proteins responsible for dorsoventral differentiation of Xenopus laevis embryos. Russian J. Dev. Biol., 30: 83-90.

Voronina, A.S., 1985. The size of RNA within the composition of heavy informosomes from loach emryo cytoplasm. Biokhimiya (Rus), 50: 1300-1304.

Voronina, A.S., 2002. Translational regulation in early development of eukaryotes. Mol. Biol., 36: 773-784.
Direct Link  |  

Voronina, A.S., E.S. Pshennikova and D.V. Shatilov, 2003. Distribution of the Xvent-2 mRNA between informosomes and polysomes in early frog development. Mol. Biol., 37: 429-435.
Direct Link  |  

©  2019 Science Alert. All Rights Reserved