Subscribe Now Subscribe Today
Research Article
 

Rapid Detection of Campylobacter jejuni in Poultry Products Using Quantum Dots and Nanobeads Based Fluorescent Immunoassay



Hong Wang, Yanbin Li and Michael Slavik
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Campylobacter jejuni causes 2.1 to 2.4 million cases of foodborne illnesses in the United States each year with some of the cases linked to eating undercooked poultry or handling raw poultry and poultry products. Thus, a rapid, specific method is needed to detect C. jejuni on poultry and poultry products. The objective of this research was to develop a sensitive immunoassay method for rapid detection of C. jejuni by using both magnetic nanobeads to separate and concentrate the target bacteria and quantum dots (QDs) as fluorescent markers. In this research, both streptavidin conjugated QDs 620 (8 nm diameter) and magnetic nanobeads (150 nm diameter) were separately coated with the specific biotin conjugated anti-C. jejuni antibody. The conjugated magnetic nanobeads then were mixed with a sample containing C. jejuni. After immunomagnetic separation, the magnetic nanobeads-C. jejuni conjugates were mixed with the conjugated QDs. Then, unattached conjugated QDs were removed using immunomagnetic separation. A spectrometer was used to measure the fluorescence of the complexes of magnetic beads-C. jejuni-QDs. The results showed that this method could detect C. jejuni in pure culture, ground turkey, chicken juice or chicken carcass wash solution at concentrations down to 2-3 cells/0.1 mL sample (20-30 cfu/mL). The total detection time was less than 2 h. This study would provide the poultry industry a more effective rapid method for detection of major foodborne pathogens in poultry products to ensure food safety.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Hong Wang, Yanbin Li and Michael Slavik, 2014. Rapid Detection of Campylobacter jejuni in Poultry Products Using Quantum Dots and Nanobeads Based Fluorescent Immunoassay. International Journal of Poultry Science, 13: 253-259.

DOI: 10.3923/ijps.2014.253.259

URL: https://scialert.net/abstract/?doi=ijps.2014.253.259

REFERENCES
1:  Birk, T., H. Ingmer, M.T. Andersen, K. Jorgensen and L. Brondsted, 2004. Chicken juice, a food-based model system suitable to study survival of Campylobacter jejuni. Lett. Applied Microbiol., 38: 66-71.
CrossRef  |  Direct Link  |  

2:  Bruchez, M., M. Moronne, P. Gin, S. Weiss and A.P. Alivisatos, 1998. Semiconductor nanocrystals as fluorescent biological labels. Science, 281: 2013-2016.
CrossRef  |  

3:  CDCP, 2010. Campylobacter. Centers for Disease Control and Prevention (CDCP), National Center for Emerging and Zoonotic Infectious Diseases. http://www.cdc.gov/nczved/divisions/dfbmd/diseases/campylobacter/.

4:  CDC., 2012. Trends in foodborne illness, 1996-2010. http://www.cdc.gov/foodborneburden/PDFs/Trends-in-Foodborne-Illness-1996-2010-508c.pdf.

5:  Chalmers, N.I., R.J. Palmer, L. Du-Thumm, R. Sullivan, W. Shi and P.E. Kolenbrander, 2007. Use of quantum dot luminescent probes to achieve single-cell resolution of human oral bacteria in biofilms. Applied Environ. Microbiol., 73: 630-636.
PubMed  |  

6:  Chan, W.C. and S. Nie, 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281: 2016-2018.
CrossRef  |  PubMed  |  

7:  Chen, L. and J. Zhang, 2012. Bioconjugated magnetic nanoparticles for rapid capture of gram-positive bacteria. J. Biosens. Bioelectron. Vol. 11. 10.4172/2155-6210.S11-005

8:  Clark, M., 2013. Salmonella-Foodborne Illness. Outbreak, Inc., San Francisco, CA.

9:  Debretsion, A., T. Habtemariam, S. Wilson, D. Nganwa and T. Yehualaeshet, 2007. Real-time PCR assay for rapid detection and quantification of Campylobacter jejuni on chicken rinses from poultry processing plant. Mol. Cell. Prob., 21: 177-181.
CrossRef  |  Direct Link  |  

10:  Gao, J., H. Gu and B. Xu, 2009. Multifunctional magnetic nanoparticles: Design, synthesis and biomedical applications. Accoun. Chem. Res., 42: 1097-1107.
CrossRef  |  Direct Link  |  

11:  Goransson, J., T.Z.G. de la Torre, M. Stromberg, C. Russell, P. Svedlindh, M. Stromme and M. Nilsson, 2010. Sensitive detection of bacterial DNA by magnetic nanoparticles. Anal. Chem., 82: 9138-9140.
CrossRef  |  Direct Link  |  

12:  Gu, H.W., K.M. Xu, C.J. Xu and B. Xu, 2006. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun., 9: 941-949.
CrossRef  |  

13:  Hahn, M.A., J.S. Tabb and T.D. Krauss, 2005. Detection of single bacterial pathogens with semiconductor quantum dots. Anal. Chem., 77: 4861-4869.
CrossRef  |  Direct Link  |  

14:  Jaiswal, J.K., H. Mattoussi, J.M. Mauro and S.M. Simon, 2003. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol., 21: 47-51.
PubMed  |  

15:  Jaiswal, J.K. and S.M. Simon, 2004. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Bio., 14: 497-504.
CrossRef  |  Direct Link  |  

16:  Joo, J., C. Yim, D. Kwon, J. Lee, H.H. Shin, H.J. Cha and S. Jeon, 2012. A facile and sensitive detection of pathogenic bacteria using magnetic nanoparticles and optical nanocrystal probes. Analyst, 137: 3609-3612.
CrossRef  |  Direct Link  |  

17:  Kloepfer, J.A., R.E. Mielke and J.L. Nadeau, 2005. Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Applied Environ. Microbiol., 5: 2548-2557.
CrossRef  |  Direct Link  |  

18:  LaGier, M.L., L.A. Joseph, T.V. Passaretti, K.A. Musser and N.M. Cirino, 2004. A real-time multiplexed PCR assay for rapid detection and differentiation of Campylobacter jejuni and Campylobacter coli. Molecul. Cell. Prob., 18: 275-282.
CrossRef  |  Direct Link  |  

19:  Leblanc-Maridor, M., F. Beaudeau, H. Seegers, M. Denis and C. Belloc, 2011. Rapid identification and quantification of Campylobacter coli and Campylobacter jejuni by real-time PCR in pure cultures and in complex samples. BMC Microbiol., Vol. 11., 10.1186/1471-2180-11-113

20:  Lekowska-Kochaniak, A., D. Czajkowska and J. Popowski, 2002. Detection of Escherichia coli O157: H7 in raw meat by immunomagnetic separation and multiplex PCR. Acta Microbiologica Polonica, 51: 327-337.
Direct Link  |  

21:  Lin, S., X. Wang, H. Zheng, Z. Mao, Y. Sun and B. Jiang, 2008. Direct detection of Campylobacter jejuni in human stool samples by real-time PCR. Can. J. Microbiol., 54: 742-747.
CrossRef  |  Direct Link  |  

22:  Liu, Y., J. Ye and Y. Li, 2003. Rapid detection of Escherichia coli O157: H7 inoculated in ground beef, chicken carcass and lettuce samples with an immunomagnetic chemiluminescence fiber-optic biosensor. J. Food Prot., 66: 512-517.
Direct Link  |  

23:  Mayr, A.M., S. Lick, J. Bauer, D. Tharigen, U. Busch and I. Huber, 2010. Rapid detection and differentiation of Campylobacter jejuni, Campylobacter coli and Campylobacter lari in food, using multiplex real-time PCR. J. Food. Prot., 2: 241-250.
Direct Link  |  

24:  Melero, B., L. Cocolin, K. Rantsiou, I. Jaime and J. Rovira, 2011. Comparison between conventional and qPCR methods for enumerating Campylobacter jejuni in a poultry processing plant. Food Microbiol., 28: 1353-1358.
CrossRef  |  Direct Link  |  

25:  Oliveira, T.C.R.M., S. Barbut and M.W. Griffiths, 2005. Detection of Campylobacter jejuni in naturally contaminated chicken skin by melting peak analysis of amplicons in real-time PCR. Int. J. Food Microbiol., 104: 105-111.
CrossRef  |  Direct Link  |  

26:  Sails, A.D., A.J. Fox, F.J. Bolton, D.R. Wareing and D.L.A. Greenway, 2003. A real-time PCR assay for the detection of Campylobacter jejuni in foods after enrichment culture. Applied Environ. Microbiol., 69: 1383-1390.
CrossRef  |  Direct Link  |  

27:  Shao, L., Y. Gao and F. Yan, 2011. Semiconductor quantum dots for biomedical applications. Sensor, 11: 11736-11751.
CrossRef  |  Direct Link  |  

28:  Su, X.L. and Y. Li, 2004. Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal. Chem., 76: 4806-4810.
CrossRef  |  Direct Link  |  

29:  Tholozan, J.L., J.M. Cappelier, J.P. Tissier, G. Delattre and M. Federighi, 1999. Physiological characterization of viable-but-nonculturable Campylobacter jejuni cells. Applied Environ. Microbiol., 65: 1110-1116.
PubMed  |  Direct Link  |  

30:  Varshney, M. and Y. Li, 2007. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens. Bioelectron., 22: 2408-2414.
CrossRef  |  Direct Link  |  

31:  Wang, H., Y. Li and M.F. Slavik, 2007. Rapid detection of Listeria monocytogenes using quantum dots and nanobeads-based optical biosensor. J. Rapid Meth. Auto. Microbiol., 15: 67-76.
CrossRef  |  Direct Link  |  

32:  Wang, H., Y. Li and M.F. Slavik, 2011. Rapid detection of Listeria monocytogenes in different food samples using magnetic nanobeads and quantum dots based fluorescent immunoassay. Biol. Eng. Trans., 4: 183-194.

33:  Wang, H., Y. Li, A. Wang and M.F. Slavik, 2011. Rapid, sensitive and simultaneous detection of three foodborne pathogens using magnetic nanobead-based immunoseparation and quantum dot-based multiplex immunoassay. J. Food Protect®., 74: 2039-2047.
Direct Link  |  

34:  Wang, Q., F. Ye, T. Fang, W. Niu, P. Liu, X. Min and X. Li, 2011. Bovine serum albumin-directed synthesis of biocompatible CdSe quantum dots and bacteria labeling. J. Coll. Interface Sci., 355: 9-14.
CrossRef  |  Direct Link  |  

35:  Xue, X., J. Pan, H. Xie, J. Wang and S. Zhang, 2009. Fluorescence detection of total count of Escherichia coli and Staphylococcus aureus on water-soluble CdSe quantum dots coupled with bacteria. Talanta, 77: 1808-1813.
CrossRef  |  Direct Link  |  

36:  Yang, L. and Y. Li, 2005. Quantum dots as fluorescent labels for quantitative detection of Salmonella Typhimurium in chicken carcass wash water. J. Food Prot., 68: 1241-1245.
Direct Link  |  

37:  Yang, L. and Y. Li, 2006. Simultaneous detection of Escherichia coli O157∶H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst, 131: 394-401.
CrossRef  |  Direct Link  |  

38:  Ziprin, R.L., R.E. Droleskey, M.E. Hume and R.B. Harvey, 2003. Failure of viable nonculturable Campylobacter jejuni to colonize the cecum of newly hatched leghorn chicks. Avian Dis., 47: 753-758.
Direct Link  |  

©  2021 Science Alert. All Rights Reserved