Subscribe Now Subscribe Today
Research Article

A Modified-bulk Segregant Analysis for Late Blooming in Sour Cherry

Fatih Ali Canli
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

A modified-bulk segregant analysis in combination with amplified fragment length polymorphism (AFLP) technique was used to identify markers associated with bloom time in a sour cherry population derived from crosses between two sour cherry (Prunus cerasus L., 2n=4x=32) cultivars, `Balaton` and `Surefire`. Screening of early and late extreme groups with 94 AFLP primer pairs resulted in the identification of two candidate bands in two different primer combinations (a 78 bp fragment in ETT/MCCG primer pair combination and a 92 bp fragment in EAA/MCGT primer pair combination). These candidate bands were present in the late bloom time group but not in the early group. Genetic markers linked to bloom time in sour cherry is very important, because utilization of markers will help the indirect selection of varieties for desirable bloom time in early generations, saving time and effort.

Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

  How to cite this article:

Fatih Ali Canli , 2004. A Modified-bulk Segregant Analysis for Late Blooming in Sour Cherry. Pakistan Journal of Biological Sciences, 7: 1684-1688.

DOI: 10.3923/pjbs.2004.1684.1688


1:  Iezzoni, A.F., 1996. Sour Cherry Cultivars: Objectives and Methods of Fruit Breeding and Characteristics of Principal Commercial Cultivars. In: Cherries: Crop Physiology, Production and Uses, Webster, A.D. and N.E. Looney (Eds.). University Press, Cambridge, UK., pp: 223-241.

2:  Thompson, M., 1996. Flowering, Pollination and Fruit Set. In: Cherries: Crop Physiology, Production and Uses, Webster, A.D. and N.E. Looney (Eds.). University Press, Cambridge, UK., pp: 223-241.

3:  Hurtado, M.A., C. Romero, S. Vilanova, A.G. Abbott, G. Llacer and M.L. Badanes, 2002. Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) and mapping of PPV (sharka) resistance. Theor. Applied Genet., 105: 182-191.
PubMed  |  

4:  Ballester, J., R.S.I. Company, P. Arus and M.C. de Vicente, 2001. Genetic mapping of a major gene delaying blooming time in almond. Plant Breed., 120: 268-270.
Direct Link  |  

5:  Dirlewanger, E., A. Moing, C. Rothan, L. Svanella and V. Pronier et al., 1999. Mapping QTL controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor. Applied Genet., 98: 18-31.
CrossRef  |  

6:  Wang, G.L. and A.H. Paterson, 1994. Assessment of DNA pooling strategies for mapping of QTL. Theor. Applied Genet., 88: 355-361.
CrossRef  |  

7:  Miklas, P.N., E. Johnson, V. Stone, J.S. Beaver, C. Montoya and M. Zapata, 1996. Selective mapping of QTL conditioning disease resistance in common bean. Crop. Sci., 36: 1344-1351.
Direct Link  |  

8:  Michelmore, R.W., I. Paran and R.V. Kesseli, 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Nat. Acad. Sci. USA., 88: 9828-9832.
PubMed  |  Direct Link  |  

9:  Lander, E.S. and D. Botstein, 1989. Mapping mendelian factors underlying quantitaive traits using RFLP linkage maps. Genetics, 121: 185-199.
PubMed  |  

10:  Chen, F.Q., D. Prehn and P.M. Hayes, 1994. Mapping genes for resistance to barley stripe rust. Theor. Applied Genet., 88: 215-219.
CrossRef  |  

11:  Decousset, L., S. Griffiths. R.P. Dunford, N. Pratchett and D.A. Laurie, 2000. Development of STS markers closely linked to the Ppd-H1 photoperiod response gene of barley (Hordeum vulgare L.). Theor. Applied Genet., 101: 1202-1206.
CrossRef  |  

12:  Smiech, M., Z. Rusinowski, S. Malepszy and K. Niemirowicz-Szczytt, 2000. New RAPD markers of tomato spotted wilt virus (TSWV) resistance in Lycopersicon esculentum Mill. Acta Physiologiae Plantarum, 22: 299-303.
CrossRef  |  

13:  Dong, N.V., P.K. Subudhi, P.N. Luong, V.D. Quang and T.D. Quy et al., 2000. Molecular mapping of a rice gene conditioning thermosensitive genic male sterility using AFLP, RFLP and SSR techniques. Theor. Applied Genet., 100: 727-734.
Direct Link  |  

14:  Yu, G.X. and R.P. Wise, 2000. An anchored AFLP- and retrotransposon-based map of diploid Avena. Genome, 43: 736-749.
PubMed  |  

15:  Wang, D., R. Karle and A.F. Lezzoni, 2000. QTL analysis of flower and fruit traits in sour cherry. Theor. Applied Genet., 100: 535-544.
CrossRef  |  

16:  Vos, P., R. Hogers, M. Bleeker, M. Reijans and T. van de Lee et al., 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res., 23: 4407-4414.
CrossRef  |  PubMed  |  Direct Link  |  

17:  Barrett, B.A. and K.K. Kidwell, 1998. AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci., 38: 1261-1271.
CrossRef  |  Direct Link  |  

18:  Hazen, S.P., P. Leroy and R.W. Ward, 2002. AFLP in Triticum aestivum L. Patterns of genetic diversity and genome distribution. Euphytica, 125: 89-102.
CrossRef  |  

19:  Basten, C.J., B.S. Weir and Z.B. Zeng, 1997. QTL CARTOGRAPHER, reference manual and tutorial for QTL mapping. North Caroliana State University.

20:  Bentolila, S. and M.R. Hanson, 2001. Identification of a BIBAC clone that co-segregates with the petunia Restorer of fertility (Rf) gene. Mol. Genet. Genomics, 266: 223-230.
PubMed  |  

©  2021 Science Alert. All Rights Reserved