Subscribe Now Subscribe Today
Research Article

The Fixed Points of Certain Discontinuous Operators on Locally Convex Spaces

J.O. Olaleru
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

The fixed point properties of four classes of operators mapping a metrisable locally convex space into itself are considered. These classes include contraction and nonexpansive mappings, discontinuous operators for certain parameter values of the classes. The existence of fixed points are proved for these classes of mappings under some conditions. Furthermore, a cone ordering scheme is devised for one of these classes, while another is shown to have open mapping properties. All these results generalise the results of Derrick and Nova from Banach spaces to metrisable locally convex spaces.

Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

  How to cite this article:

J.O. Olaleru , 2006. The Fixed Points of Certain Discontinuous Operators on Locally Convex Spaces. Journal of Applied Sciences, 6: 2813-2816.

DOI: 10.3923/jas.2006.2813.2816


1:  Derrick, W.R. and L. Nova, 1989. Fixed point theorems for discontinuous operators. Glasnik Mate., 24: 339-348.

2:  Derrick, W.R. and L. Nova, 1992. Interior Properties and Fixed Points of Certain Discontinuous Operators. In: Progress in Functional Analysis, Bierstedt, K.D., J. Bonet, J. Horvath and M. Maestre (Eds.). Elsevier Science Publishers, UK.

3:  Goebel, K., W.A. Kirk and T.N. Shimi, 1972. A fixed point theorem in uniformly convex spaces. Proc. Am. Math. Soc., 35: 171-174.
Direct Link  |  

4:  Graves, L.M., 1950. Some mapping theorems. Duke Math. J., 17: 111-114.
CrossRef  |  

5:  Hardy, G. and T. Rogers, 1973. A generalization of a fixed point theorem of reic. Can. Math. Bull., 2: 201-206.

6:  Kannan, R., 1969. Some results on fixed points II. Am. Math. Monthly, 76: 405-408.

7:  Kannan, R., 1971. Some results on fixed points III. Fund. Math., 70: 169-177.

8:  Nova, L., 1986. Fixed point theorems for discontinuous operators. Pacific J. Math., 123: 189-196.
Direct Link  |  

9:  Olaleru, J.O., 2002. On weighted spaces without a fundamental sequence of bounded sets. Int. Math. Math. Sci., 30: 449-457.
Direct Link  |  

10:  Olaleru, J.O., 2006. On Kannan maps in locally convex spaces. Proceedings of the International Conference on New Trends in Mathematical and Computer Sciences with Applications to Real World Problems, Jun. 14-19, Covenant University, Cannanland, Nigeria, pp: 573-585.

11:  Rhoades, B.E., 1977. A comparism of various definitions of contractive mappings. Trans. Am. Math. Soc., 226: 257-290.
Direct Link  |  

12:  Robertson, A.P. and W.J. Robertson, 1980. Topological Vector Spaces. Cambridge University Press, Cambridge.

13:  Schaffer, H.H., 1999. Topological Vector Spaces. Springer-Verlag, Berlin.

©  2021 Science Alert. All Rights Reserved