Subscribe Now Subscribe Today
Research Article
 

Kinetics and Thermodynamic Study of Lead Adsorption from Aqueous Solution onto Rubber (Hevea brasiliensis) Leaf Powder



M.A.K.M. Hanafiah , W.S.W. Ngah , S.C. Ibrahim , H. Zakaria and W.A.H.W. Ilias
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

The ability of rubber or Hevea Brasiliensis (HB) leaf powder to adsorb Pb2+ from aqueous solution has been investigated through batch experiments. The Pb2+ adsorption was found to be dependent on contact time, initial Pb2+ concentration and temperature. The kinetic processes of Pb2+ adsorption onto HB leaf powder were described by applying pseudo-first-order and pseudo-second-order rate equations. The kinetics data for the adsorption process obeyed pseudo-second-order equation. The equilibrium data were described well by the Langmuir and Freundlich isotherms. The maximum adsorption capacity determined from the Langmuir isotherm was found to be 46.73 mg g-1 at 303 K. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were also calculated. The adsorption process was found to be exothermic and spontaneous in nature. The studies showed that HB leaf powder could be used as a good adsorbent material for Pb2+ removal from aqueous solution.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

M.A.K.M. Hanafiah , W.S.W. Ngah , S.C. Ibrahim , H. Zakaria and W.A.H.W. Ilias , 2006. Kinetics and Thermodynamic Study of Lead Adsorption from Aqueous Solution onto Rubber (Hevea brasiliensis) Leaf Powder. Journal of Applied Sciences, 6: 2762-2767.

DOI: 10.3923/jas.2006.2762.2767

URL: https://scialert.net/abstract/?doi=jas.2006.2762.2767

REFERENCES
1:  Anonymous, 2000. Environmental Quality Act 1974 (Law of Malaysia). MDC Publishers, Kuala Lumpur, Malaysia.

2:  Atkins, P.W., 1995. Physical Chemistry. 5th Edn., Oxford University Press, Oxford.

3:  Azizian, S., 2004. Kinetic models of sorption: A theoretical analysis. J. Colloid Interface Sci., 276: 47-52.
CrossRef  |  Direct Link  |  

4:  Benhammou, A., A. Yaacoubi, L. Nibou and B. Tanouti, 2005. Adsorption of metal ions onto Moroccan stevensite: Kinetic and isotherm studies. J. Colloid Interface Sci., 282: 320-326.

5:  Dimitrova, S.V. and D.R. Mehandgiev, 1998. Lead removal from aqueous solutions by granulated blast-furnace slag. Water Res., 32: 3289-3292.

6:  Dimitrova, S.V., 2002. Use of granular slag columns for lead removal. Water Res., 36: 4001-4008.

7:  Freundlich, H.M.F., 1906. Uber die adsorption in lusungen. Z. Phys. Chem., 57: 385-470.

8:  Gupta, V.K., C.K. Jain, I. Ali, M. Sharma and V.K. Saini, 2003. Removal of cadmium and nickel from wastewater using bagasse fly ash-a sugar industry waste. Water Res., 37: 4038-4044.
CrossRef  |  PubMed  |  Direct Link  |  

9:  Hanafiah, M.A.K.M., S. Shafiei, M.K. Harun and M.Z.A. Yahya, 2006. Kinetic and thermodynamic study of Cd2+ adsorption onto rubber tree (Hevea Brasiliensis) leaf powder. Mater. Sci. Forum, 517: 217-221.

10:  Horsfall, Jr. M. and A.A. Abia, 2003. Sorption of cadmium(II) and zinc(II) ions from aqueous solutions by cassava waste biomass (Manihot eculenta cranz). Water Res., 37: 4913-4923.

11:  Ho, Y.S. and G. McKay, 1999. The sorption of lead(II) ions on peat. Water Res., 33: 578-584.
CrossRef  |  Direct Link  |  

12:  Ho, Y.S., 2003. Removal of copper ions from aqueous solution by tree fern. Water Resour., 37: 2323-2330.
CrossRef  |  PubMed  |  

13:  Keskinkan, O., M.Z.L. Goksu, M. Basibuyuk and C.F. Forster, 2004. Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour. Technol., 92: 197-200.
CrossRef  |  Direct Link  |  

14:  Kobya, M., E. Demirbas, E. Senturk and M. Ince, 2005. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour. Technol., 96: 1518-1521.
CrossRef  |  

15:  Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24: 1-39.
Direct Link  |  

16:  Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40: 1361-1403.
CrossRef  |  Direct Link  |  

17:  Li, Y.H., Z. Di, J. Ding, D. Wu, Z. Luan and Y. Zhu, 2005. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res,. 39: 605-609.

18:  Low, K.S., C.K. Lee and S.C. Liew, 2000. Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochem., 36: 59-64.
Direct Link  |  

19:  Meena, A.K., G.K. Mishra, P.K. Rai, C. Rajagopal and P.N. Nagar, 2005. Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J. Hazard. Mater., 122: 161-170.
CrossRef  |  

20:  Ngah, W.S.W., C.S. Endud and R. Mayanar, 2002. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React. Funct. Polym., 50: 181-190.
CrossRef  |  Direct Link  |  

21:  Ngah, W.S.W., A. Kamari and Y.J. Koay, 2004. Equilibrium and kinetics studies of adsorption of copper(II) on chitosan and chitosan/PVA beads. Int. J. Biol. Macromol., 34: 155-161.

22:  Ngah, W.S.W. and A. Fatinathan, 2006. Chitosan flakes and chitosan-GLA beads for adsorption of p-nitrophenol in aqueous solution. Colloids Surfaces A, 277: 214-222.
Direct Link  |  

23:  Quek, S.Y., D.A.J. Wase and C.F. Forster, 1998. The use of sago waste for the sorption of lead and copper. Water SA, 24: 251-256.
Direct Link  |  

24:  Rivera-Utrilla, J., I. Bautista-Toledo, M.A. Ferro-Garcia and C. Moreno-Castilla, 2003. Bioadsorption of Pb(II), Cd(II) and Cr(VI) on activated carbon from aqueous solutions. Carbon, 41: 323-330.

25:  Sekar, M., V. Sakthi and S. Rengaraj, 2004. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. J. Colloid Interface Sci., 279: 307-313.
CrossRef  |  PubMed  |  Direct Link  |  

26:  Singh, S.P., Q.Y. Ma and W.G. Harris, 2001. Heavy metal interactions with phosphatic clay: Sorption and desorption behavior. J. Environ. Qual., 30: 1961-1968.
PubMed  |  Direct Link  |  

27:  Taty-Costodes, V.C., H. Fauduet, C. Porte and A. Delacroix, 2003. Removal of Cd(II) and Pb(II) ions, from aqueous solutions by adsorption onto sawdust of Pinus sylvestris. J. Hazard. Mater., B105: 121-142.
CrossRef  |  

28:  Wong, K.K., C.K. Lee, K.S. Low and M.J. Haron, 2003. Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere, 50: 23-28.
CrossRef  |  Direct Link  |  

29:  Yan, G. and T. Viraraghavan, 2003. Heavy metal removal from aqueous solution by fungus Mucor rouxii. Water Res., 37: 4486-4496.

30:  Yu, L.J., S.S. Shukla, K.L. Dorrisa, A. Shuklab and J.L. Margrave, 2003. Adsorption of chromium from aqueous solutions by maple sawdust. J. Hazard. Mater., 100: 53-63.
CrossRef  |  Direct Link  |  

©  2021 Science Alert. All Rights Reserved