Subscribe Now Subscribe Today
Research Article

Substrate Inhibition Kinetics of Phenol Degradation by Pseudomonas aeruginosa and Pseudomonas fluorescence

B.O. Oboirien , B. Amigun , T.V. Ojumu , O.A. Ogunkunle , O.A. Adetunji , E. Betiku and B.O. Solomon
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

The effect of aeration and initial substrate concentration on the biodegradation of phenol by Pseudomonas aeruginosa NCIB 950, Pseudomonas fluorescence NCIB 3756 and their mixed was investigated in batch reactor. Increasing initial concentration from 100 ppm (100 mg L-1) to 250 and 500 ppm increased the lag phase for pure culture Pseudomonas aeruginosa to 8 and 16 h, respectively. Mixed cultures had a lag phase only at concentration of 500 mg L-1. There was increase in biodegradation rate when there was increase in aeration rate, but statically the effect of initial concentration was more significant at 95% confidence level. Pseudomonas aeruginosa had better degradation rate. Fitting data into the integrated Haldane Model, the kinetic parameters values derived from the model (μmax, Ki and Ks), for pure culture in 250 and 500 ppm phenol are 0.46, 97, 450 and 0.38 h-1, 195 and 450 mg L-1, respectively while for mixed culture in 250 and 500 ppm phenol 0.85, 48, 250 and 0.58 h-1, 127 and 450 mg L-1, respectively were obtained.

Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

  How to cite this article:

B.O. Oboirien , B. Amigun , T.V. Ojumu , O.A. Ogunkunle , O.A. Adetunji , E. Betiku and B.O. Solomon , 2005. Substrate Inhibition Kinetics of Phenol Degradation by Pseudomonas aeruginosa and Pseudomonas fluorescence. Biotechnology, 4: 56-61.

DOI: 10.3923/biotech.2005.56.61


1:  Singleton, I., 1994. Microbial metabolism of xenobiotics: Fundamental and applied research. J. Chem. Technol. Biotechnol., 59: 9-23.
CrossRef  |  

2:  Annadurai, G., S. Rajehbabu, K.P.O. Mahesh and T. Murugen, 2000. Adsorption and Biodegradation of phenol by chistosan-immobilized Psuedomonas putida (NICM 2174). Bioproc. Eng., 22: 493-501.

3:  Hill, G.A. and C.W. Robinson, 1975. Substrate inhibition kinetics: Phenol Degradation by Pseudomonas putida. Biotechnol. Bioeng., 17: 599-615.
CrossRef  |  

4:  Li, J.K and A.E. Humphrey, 1989. Kinetics and fluorometric behaviour of a phenol fermentation. Biotechnol. Lett., 11: 177-182.

5:  Goudar, C.T., S.H. Ganji, B.G. Pujar and K.A. Strevett, 2000. Substrate inhibition of phenol biodegradation. Water Environ. Res., 72: 50-55.

6:  Paller, G., R.K. Hommel and H.P. Kleber, 1995. Phenol degradation by Acinetobacter calcoaceticus NCIB 8250. J. Basic Microbiol., 35: 325-335.
PubMed  |  Direct Link  |  

7:  Hughes, E.J., R.C. Bayly and R.A. Skurray, 1984. Evidence for isofunctional enzymes in the degradation of phenol, m-and p-toluate and p-cresol via Catechol meta cleavage pathways in Alcaligenes eutrophus. J. Bacteriol., 158: 79-83.
Direct Link  |  

8:  Leonard, D. and N.D. Lindley, 1998. Carbon and energy flux constraints in continuous cultures of Alcaligenes eutrophus grown on phenol. Microbiology, 144: 241-248.
Direct Link  |  

9:  Buswell, J.A., 1975. Metabolism of phenol and cresols by Bacillus Stearothermophilus. J. Bateriol., 124: 1077-1083.

10:  Folsom, B.R., P.J. Champan and P.H. Pritchard, 1990. Phenol and Trichloroethylene degradation by Pseudomonas cepacia G4: Kinetics and interactions between substrates. Applied Environ. Microbial., 56: 1279-1285.
Direct Link  |  

11:  Solomon, B.O., C. Posten, M.P.F. Harder, V. Hecht and W.D. Deckwer, 1994. Energetics of Pseudomonas cepacia growth in a chemostat with phenol Limitation. J. Chem. Technol. Biotechnol., 60: 275-282.
CrossRef  |  

12:  Bettmann, H. and H.J. Rehm, 1984. Degradation of phenol by polymer entrapped microorganisms. Applied Microbial. Biotechnol., 20: 285-290.
CrossRef  |  

13:  Sokol, W., 1987. Oxidation of inhibitory substrate by washed cells (oxidation of by Pseudomonas putida). Biotechnol. Bioeng., 30: 921-927.

14:  Yang, R.D. and A.E. Humprey, 1975. Dynamics behaviour of the chemostat subject substrate inhibition. Biotechnol. Bioeng., 11: 139-153.

15:  Kotturi, G., C.W. Robinson and W.E. Inniss, 1991. Phenol degradation by a Psychtrotrophic strain of Pseudomonas putida. Applied Microbial. Biotechnol., 34: 539-543.
CrossRef  |  

16:  Andrews, J.F., 1968. A mathematical model for the continuos culture of microorganisms utilizing inhibitory substance. Biotechnol. Bioeng., 10: 707-723.

17:  Chi, C.T. and J.A. Howell, 1976. Transient behaviour of a continuous stirred tank biological reactor utilising phenol as an inhibitory substrate. Biotechnol. Bioeng., 18: 63-80.

18:  Sokol, W., 1988. Dynamics of continuous stirred-tank biochemical reactor utilizing. Biotechnol. Bioeng., 31: 198-202.

19:  Allop, P.J., Y. Chisit, M. Moo-Young and G.R. Sullivan, 1993. Dynamics of phenol Degradation by Pseudomonas putida. Biotechnol. Bioeng., 41: 572-580.

20:  Edwards, V.H., 1970. The influence of high substrate concentrations on microbial Kinetics. Biotechnol. Bioeng., 12: 679-712.

21:  Bondar, V.S., M.G. Boersma, E.L. Golovlev, J. Vervoort and W.J.H.V. Berkel et al., 1998. 19F NMR study on the biodegradation of fluorophenols by various Rhodococcus species. Biodegradation, 9: 475-486.

22:  Collins, L.D. and A.J. Daugulis, 1997. Biodegradation of phenol at high initial concentration in two-phase partitioning batch and fed-batch bioreactors. Biotechnol. Bioeng., 55: 155-162.
Direct Link  |  

23:  Hinteregger, C., R. Leitner, M. Loidl, A. Fersh and F. Streichsbir, 1992. Degradation of phenol and phenolic compounds by Pseudomonas putida EKII. Applied Environ. Microbiol., 37: 252-259.

24:  Thomas, S., S. Sarfaraz, L.C. Mishra and L. Iyengar, 2002. Degradation of Phenol compounds by a defined denitrifying bacterial culture. World J. Microbiol. Biotechnol., 18: 57-63.

25:  Ojumu, T.V., O.O. Bello, J.A. Sonibare and B.O. Solomon, 2004. Evaluation of microbial systems for bioremediation of petroleum refinery effluents in Nigeria. Afr. J. Biotechnol., 4: 31-35.
Direct Link  |  

26:  Blanch, H.W. and D.S. Clark, 1997. Biochemical Engineering. Marcel Dekker Inc., New York.

©  2021 Science Alert. All Rights Reserved