Research Article

First Report of Antifungal Properties of a New Strain of Streptomyces plicatus (Strain101) Against Four Iranian Phytopathogenic Isolates of Verticillium dahliae, A New Horizon in Biocontrol Agents

Aghighi S, G.H. Shahidi Bonjar and I. Saadoun
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

This is the first report on antifungal activity of a new strain of Streptomyces plicatus (strain101) against four Iranian phytopathogenic isolates of Verticillium dahliae. In the recent decades, biological control of plant diseases has received more attention mainly as a response to public concern about the use of hazardous chemicals in the environment. Soil Actinomycetes particularly Streptomyces spp. enhance soil fertility and have antagonistic activity against wide range of soil-borne plant pathogens. In search for metabolites of soil Actinomycetes having antifungal activity against four isolates of the cosmopolitan pathogen, Verticillium dahliae Klebahn, 110 isolates were screened. Among all, strain101 that was identified as a new strain of S. plicatus, showed high level of activity in Agar disk and Well-diffusion methods. S. plicatus was propagated in submerged cultures and active crude was prepared upon which some biological characterizations performed. The active metabolite (s) is polar, soluble in H2O and methanol but insoluble in chloroform, dichloromethane or hexane. Antifungal activity composed of two types, mycelial inhibition, inhibition of microsclerotia and melanin production. Antifungal gene from S. plicatus Strain 101 may be a useful candidate for genetic engineering of agriculturally important crop plants for increased tolerance against V. dahliae.

Related Articles in ASCI
Search in Google Scholar
View Citation
Report Citation

  How to cite this article:

Aghighi S, G.H. Shahidi Bonjar and I. Saadoun, 2004. First Report of Antifungal Properties of a New Strain of Streptomyces plicatus (Strain101) Against Four Iranian Phytopathogenic Isolates of Verticillium dahliae, A New Horizon in Biocontrol Agents. Biotechnology, 3: 90-97.

DOI: 10.3923/biotech.2004.90.97



  1. Rowe, R.C. and D.L. Powelson, 2002. Potato early dying: Management challenges in a changing production environment. Plant Dis., 86: 1184-1193.
    CrossRef  |  Direct Link  |  

  2. Lopez-Escudero, F.J. and M.A. Blanco-Lopez, 2000. Control of Verticillium Wilt by Soil Solarization in Established Olive Orchards in Andalucia (Southern Spain). In: Advances in Verticillium Research and Disease Management, Tjamos, E.C., R.C. Rowe, J.B. Heale and D.R. Fravel (Eds.). The APS Press, St. Paul, Minnesota, USA., pp: 332-335

  3. Tjamos, E.C., D.A. Biris and E.J. Paplomatas, 1991. Recovery of olive trees with verticillium wilt after individual application of soil solarization in established olive orchards. Plant Dis., 75: 557-562.
    Direct Link  |  

  4. Schreiber, L.R. and R.J. Green, Jr., 1963. Effect of root exudate on germination of conidia and microsclerotia of Verticillium albo-atrum inhibited by the soil fungistatic principle. Phytopathology, 53: 260-264.

  5. Issac, I., 1967. Speciation in Verticillium. Ann. Rev. Phytopathol., 5: 201-222.

  6. Schnathorst, W.C., 1981. Life Cycle and Epidemiology of Verticillium. In: Fungal Wilt Diseases of Plants, Mace, M.E., A.A. Bell and C.H. Beckman (Eds.). Academic Press, New York, pp: 81-111

  7. Ordentlich, A., A. Nachmias and I. Chet, 1990. Integrated control of Verticillium dahliae in potato by Trichoderma harzianum and captan. Crop Prot., 9: 363-366.

  8. Fravel, D.R. and D.P. Roberts, 1991. In situ evidence for the role of glucose oxidase in the biocontrol of Verticillium wilt by Talaromyces flavus. Biocontrol Sci. Technol., 1: 91-99.

  9. Berg, G., C. Knaape, G. Ballin and D. Seidel, 1994. Biological control of Verticillium dahliae kleb. by natural occurring rhizosphere bacteria. Arch. Phytopathol. Pflanz., 29: 249-262.
    CrossRef  |  

  10. Dong, H., W. Li, D. Zhang and W. Tang, 2003. Differential expression of induced resistance by an aqueous extract of killed Penicillium chrysogenum against Verticillium wilt of cotton. Crop Prot., 22: 129-134.

  11. Lee, J.Y. and B.K. Hwang, 2002. Diversity of antifungal actinomycetes in various vegetative soils of Korea. Can. J. Microbiol., 48: 407-417.
    Direct Link  |  

  12. Kong, L.D., D.D. Tzeng and C.H. Yang, 2001. Generation of PCR-based DNA fragments for specific detection of Streptomyces saraceticus N45. Proc. Natl. Sci. Council Roc., 25: 119-127.
    Direct Link  |  

  13. Gottlieb, D., 1973. General Consideration and Implications of the Actinomycetales. In: Actinomycetales: Characteristics and Practical Importance, Sykes, G. and F.A. Skinner (Eds.). Academic Press, London, pp: 1-5

  14. Okami, B. and A.K. Hotta, 1988. Search and Discovery of New Antibiotics. In: Actinomycetes in Biotechnology, Goodfellow, M., S.T. Williams and M. Mordarski (Eds.). Pergamon Press, Oxford, pp: 33-67

  15. Grabley, S. and R. Thiericke, 1999. Drug Discovery from Nature. 1st Edn., Springer, London, ISBN: 978-3-540-64844-4, pp: 5-7

  16. Valois, D., K. Fayad, T. Barasubiye, M. Garon, C. Dery, R. Brzezinski and C. Beaulieu, 1996. Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Applied Environ Microbiol., 62: 1630-1635.
    Direct Link  |  

  17. Merriman, P.R., R.D. Price, J.F. Kollmorgen, T. Piggott and E.H. Ridge, 1974. Effect of seed inoculation with Bacillus subtilis and Streptomyces griseus on the growth of cereals and carrots. Aust. J. Agric. Res., 25: 219-226.
    CrossRef  |  Direct Link  |  

  18. Brown, M.E., 1974. Seed and root bacterization. Annu. Rev. Phytopathol., 12: 181-197.
    CrossRef  |  Direct Link  |  

  19. Chi, C.C. and E.W. Hanson, 1965. In vitro effects of Streptomyces rimosus on some soil-inhabiting pathogenic fungi. Plant Dis. Rep., 49: 159-163.

  20. Tahvonen, R. and H. Avikainen, 1987. The biological control of seed-borne Alternaria brassicola of cruciferous plants with a powdery preparation of Streptomyces sp. J. Agric. Sci. Finland, 59: 199-208.

  21. Saadoun, I., F. Al-Momani, H. Malkawi and M.J. Mohammad, 1999. Isolation, identification and analysis of antibacterial activity of soil streptomycetes isolates from North Jordan. Microbios, 100: 41-46.
    Direct Link  |  

  22. Saadoun, I. and R. Gharaibeh, 2002. The Streptomycetes flora of Jordan and its potential as a source of antibiotics active against antibiotic resistant Gram negative bacteria. World J. Microbiol. Biotechnol., 18: 465-470.
    Direct Link  |  

  23. Acar, J.F. and F.W. Goldstein, 1996. Disk Susceptibility Test. 4th Edn., William and Wilkins Co., Baltimore, pp: 1-51

  24. El-Tarabily, K.A., M.H. Soliman, A.H. Nassar, H.A. Al-Hassani, K. Sivasithamparam, F. McKenna and G.E. Hardy, 2000. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol., 49: 573-583.
    Direct Link  |  

  25. Shirling, E.B. and D. Gottlieb, 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Evol. Microbiol., 16: 313-340.
    CrossRef  |  Direct Link  |  

  26. Prauser, H., 1964. Aptness and application of colour codes for exact description of colours of Streptomyces. Z. Allg. Mikrobiol., 4: 95-98.
    PubMed  |  

  27. Bonjar, G.H.S., 2004. New approaches in screening for antibacterials in plants. Asian J. Plant Sci., 3: 55-60.
    CrossRef  |  Direct Link  |  

  28. Moreno, A.B., A.M. Pozo, M. Borja and B.S. Segundo, 2003. Activity of antifungal protein from Aspergillus giganteus against Botrytis cinerea. Phytopathology, 93: 1344-1352.
    Direct Link  |  

  29. Terras, F.R.G., K. Eggermont, V. Kovaleva, N.V. Raikhel and R.W. Osborn et al., 1995. Small cystein-rich antifungal proteins from radish (Raphanus sativus L.). Their role in plant defense. Plant Cell, 7: 573-588.

  30. Brogue, K., I. Chet, M. Holliday, R. Cressman and P. Biddle et al., 1991. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 254: 1194-1197.
    CrossRef  |  Direct Link  |  

  31. Selitrennikoff, C.P., 2001. Antifungal proteins. Applied Environ. Microbiol., 67: 2883-2894.
    CrossRef  |  PubMed  |  Direct Link  |  

  32. Yun, D.J., Y. Zhao, J.M. Pardo, M.L. Narasimhan and B. Damsz et al., 1997. Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein. Proc. Natl. Acad. Sci., 94: 7082-7087.

  33. Dhingra, O.D. and J.B. Sinclair, 1995. Basic Plant Pathology Methods. 1st Edn., CRC Press, USA., ISBN: 978-0-387-24145-6, pp: 287-296

  34. Pegg, G.F. and B.L. Brady, 2002. Verticillium Wilts. Cromwell Press, UK., pp: 1-3

  35. Fravel, D.R. and R.P. Larkin, 2000. Effect of Sublethal Stresses on Microsclerotia of Verticillium Dahliae. In: Advances in Verticillium Research and Disease Management, Tjamos, E.C., R.C. Rowe, J.B. Heale and D.R. Fravel (Eds.). The American Phytopathological Society, USA., pp: 301-306

  36. Termorshuizen, A.J., L. Soesanto and J.M. Raaijmakers, 2001. Consistent control of verticillium wilt by combination of Pseudomonas fluorescens P60 and Talaromyces flavus.

  37. Watkins, G.M., 1981. Compendium of Cotton Diseases. The American Phytopathological Society Press, USA., pp: 60-62

  38. Dong, P., Q. Ji, T. Long and G. Ahmat, 1998. Preparation and application of biological control agents to control cotton wilts of Fusarium and Verticillium.

  39. Ma, P. and L. Shezeng, 2000. Incidence and Damage of Verticillium Wilt of Cotton in China. In: Advances in Verticillium Research and Disease Management, Tjamos, E.C., R.C. Rowe, J.B. Heale and D.R. Fravel (Eds.). The American Phytopathological Society Press, St. Paul, Minnesota, pp: 353-357

  40. Agrios, G.N., 1988. Plant Pathology. 3rd Edn., Academic Press, San Diego, pp: 220-222

  41. Lahdenpera, M., 2003. How mycostop acts in the control of fungal plant diseases?.

©  2023 Science Alert. All Rights Reserved