Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Y. H Yeh
Total Records ( 3 ) for Y. H Yeh
  B Burstein , P Comtois , G Michael , K Nishida , L Villeneuve , Y. H Yeh and S. Nattel

Rationale: Although connexin changes are important for the ventricular arrhythmic substrate in congestive heart failure (CHF), connexin alterations during CHF-related atrial arrhythmogenic remodeling have received limited attention.

Objective: To analyze connexin changes and their potential contribution to the atrial fibrillation (AF) substrate during the development and reversal of CHF.

Methods and Results: Three groups of dogs were studied: CHF induced by 2-week ventricular tachypacing (240 bpm, n=15); CHF dogs allowed a 4-week nonpaced recovery interval after 2-week tachypacing (n=16); and nonpaced sham controls (n=19). Left ventricular (LV) end-diastolic pressure and atrial refractory periods increased with CHF and normalized on CHF recovery. CHF caused abnormalities in atrial conduction indexes and increased the duration of burst pacing-induced AF (DAF, from 22±7 seconds in control to 1100±171 seconds, P<0.001). CHF did not significantly alter overall atrial connexin (Cx)40 and Cx43 mRNA and protein expression levels, but produced Cx43 dephosphorylation, increased Cx40/Cx43 protein expression ratio and caused Cx43 redistribution toward transverse cell-boundaries. All of the connexin-alterations reversed on CHF recovery, but CHF-induced conduction abnormalities and increased DAF (884±220 seconds, P<0.001 versus control) remained. The atrial fibrous tissue content increased from 3.6±0.7% in control to 14.7±1.5% and 13.3±2.3% in CHF and CHF recovery, respectively (both P<0.01 versus control), with transversely running zones of fibrosis physically separating longitudinally directed muscle bundles. In an ionically based action potential/tissue model, fibrosis was able to account for conduction abnormalities associated with CHF and recovery.

Conclusions: CHF causes atrial connexin changes, but these are not essential for CHF-related conduction disturbances and AF promotion, which are rather related primarily to fibrotic interruption of muscle bundle continuity.

  X Qi , Y. H Yeh , D Chartier , L Xiao , Y Tsuji , B. J.J.M Brundel , I Kodama and S. Nattel

Background— Sustained bradycardia is associated with long-QT syndrome in human beings and causes spontaneous torsades de pointes in rabbits with chronic atrioventricular block (CAVB), at least partly by downregulating delayed-rectifier K+-current to cause action potential (AP) prolongation. We addressed the importance of altered Ca2+ handling, studying underlying mechanisms and consequences.

Methods and Results— We measured ventricular cardiomyocyte [Ca2+]i (Indo1-AM), L-type Ca2+-current (ICaL) and APs (whole-cell perforated-patch), and Ca2+-handling protein expression (immunoblot). CAVB increased AP duration, cell shortening, systolic [Ca2+]i transients, and caffeine-induced [Ca2+]i release, and CAVB cells showed spontaneous early afterdepolarizations (EADs). ICaL density was unaffected by CAVB, but inactivation was shifted to more positive voltages, increasing the activation-inactivation overlap zone for ICaL window current. Ca2+-calmodulin–dependent protein kinase-II (CaMKII) autophosphorylation was enhanced in CAVB, indicating CaMKII activation. CAVB also enhanced CaMKII-dependent phospholamban-phosphorylation and accelerated [Ca2+]i-transient decay, consistent with phosphorylation-induced reductions in phospholamban inhibition of sarcoplasmic reticulum (SR) Ca2+-ATPase as a contributor to enhanced SR Ca2+ loading. The CaMKII-inhibitor KN93 reversed CAVB-induced changes in caffeine-releasable [Ca2+]i and ICaL inactivation voltage and suppressed CAVB-induced EADs. Similarly, the calmodulin inhibitor W7 suppressed CAVB-induced ICaL inactivation voltage shifts and EADs, and a specific CaMKII inhibitory peptide prevented ICaL inactivation voltage shifts. The SR Ca2+-uptake inhibitor thapsigargin and the SR Ca2+ release inhibitor ryanodine also suppressed CAVB-induced EADs, consistent with an important role for SR Ca2+ loading and release in arrhythmogenesis. AP-duration changes reached a maximum after 1 week of bradypacing, but peak alterations in CaMKII and [Ca2+]i required 2 weeks, paralleling the EAD time course.

Conclusions— CAVB-induced remodeling enhances [Ca2+]i load and activates the Ca2+-calmodulin-CaMKII system, producing [Ca2+]i-handling abnormalities that contribute importantly to CAVB-induced arrhythmogenic afterdepolarizations.

  R Wakili , Y. H Yeh , X Yan Qi , M Greiser , D Chartier , K Nishida , A Maguy , L. R Villeneuve , P Boknik , N Voigt , J Krysiak , S Kaab , U Ravens , W. A Linke , G. J. M Stienen , Y Shi , J. C Tardif , U Schotten , D Dobrev and S. Nattel

Atrial fibrillation impairs atrial contractility, inducing atrial stunning that promotes thromboembolic stroke. Action potential (AP)-prolonging drugs are reported to normalize atrial hypocontractility caused by atrial tachycardia remodeling (ATR). Here, we addressed the role of AP duration (APD) changes in ATR-induced hypocontractility.

Methods and Results—

ATR (7-day tachypacing) decreased APD (perforated patch recording) by 50%, atrial contractility (echocardiography, cardiomyocyte video edge detection), and [Ca2+]i transients. ATR AP waveforms suppressed [Ca2+]i transients and cell shortening of control cardiomyocytes; whereas control AP waveforms improved [Ca2+]i transients and cell shortening in ATR cells. However, ATR cardiomyocytes clamped with the same control AP waveform had 60% smaller [Ca2+]i transients and cell shortening than control cells. We therefore sought additional mechanisms of contractile impairment. Whole-cell voltage clamp revealed reduced ICaL; ICaL inhibition superimposed on ATR APs further suppressed [Ca2+]i transients in control cells. Confocal microscopy indicated ATR-impaired propagation of the Ca2+ release signal to the cell center in association with loss of t-tubular structures. Myofilament function studies in skinned permeabilized cardiomyocytes showed altered Ca2+ sensitivity and force redevelopment in ATR, possibly due to hypophosphorylation of myosin-binding protein C and myosin light-chain protein 2a (immunoblot). Hypophosphorylation was related to multiple phosphorylation system abnormalities where protein kinase A regulatory subunits were downregulated, whereas autophosphorylation and expression of Ca2+-calmodulin-dependent protein kinase II and protein phosphatase 1 activity were enhanced. Recovery of [Ca2+]i transients and cell shortening occurred in parallel after ATR cessation.


Shortening of APD contributes to hypocontractility induced by 1-week ATR but accounts for it only partially. Additional contractility-suppressing mechanisms include ICaL current reduction, impaired subcellular Ca2+ signal transmission, and altered myofilament function associated with abnormal myosin and myosin-associated protein phosphorylation. The complex mechanistic basis of the atrial hypocontractility associated with AF argues for upstream therapeutic targeting rather than interventions directed toward specific downstream pathophysiological derangements.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility