Search. Read. Cite.

Easy to search. Easy to read. Easy to cite with credible sources.

Circulation: Arrhythmia and Electrophysiology

Year: 2010  |  Volume: 3  |  Issue: 5  |  Page No.: 530 - 541

Multiple Potential Molecular Contributors to Atrial Hypocontractility Caused by Atrial Tachycardia Remodeling in Dogs

R Wakili, Y. H Yeh, X Yan Qi, M Greiser, D Chartier, K Nishida, A Maguy, L. R Villeneuve, P Boknik, N Voigt, J Krysiak, S Kaab, U Ravens, W. A Linke, G. J. M Stienen, Y Shi, J. C Tardif, U Schotten, D Dobrev and S. Nattel



Atrial fibrillation impairs atrial contractility, inducing atrial stunning that promotes thromboembolic stroke. Action potential (AP)-prolonging drugs are reported to normalize atrial hypocontractility caused by atrial tachycardia remodeling (ATR). Here, we addressed the role of AP duration (APD) changes in ATR-induced hypocontractility.

Methods and Results—

ATR (7-day tachypacing) decreased APD (perforated patch recording) by 50%, atrial contractility (echocardiography, cardiomyocyte video edge detection), and [Ca2+]i transients. ATR AP waveforms suppressed [Ca2+]i transients and cell shortening of control cardiomyocytes; whereas control AP waveforms improved [Ca2+]i transients and cell shortening in ATR cells. However, ATR cardiomyocytes clamped with the same control AP waveform had 60% smaller [Ca2+]i transients and cell shortening than control cells. We therefore sought additional mechanisms of contractile impairment. Whole-cell voltage clamp revealed reduced ICaL; ICaL inhibition superimposed on ATR APs further suppressed [Ca2+]i transients in control cells. Confocal microscopy indicated ATR-impaired propagation of the Ca2+ release signal to the cell center in association with loss of t-tubular structures. Myofilament function studies in skinned permeabilized cardiomyocytes showed altered Ca2+ sensitivity and force redevelopment in ATR, possibly due to hypophosphorylation of myosin-binding protein C and myosin light-chain protein 2a (immunoblot). Hypophosphorylation was related to multiple phosphorylation system abnormalities where protein kinase A regulatory subunits were downregulated, whereas autophosphorylation and expression of Ca2+-calmodulin-dependent protein kinase II and protein phosphatase 1 activity were enhanced. Recovery of [Ca2+]i transients and cell shortening occurred in parallel after ATR cessation.


Shortening of APD contributes to hypocontractility induced by 1-week ATR but accounts for it only partially. Additional contractility-suppressing mechanisms include ICaL current reduction, impaired subcellular Ca2+ signal transmission, and altered myofilament function associated with abnormal myosin and myosin-associated protein phosphorylation. The complex mechanistic basis of the atrial hypocontractility associated with AF argues for upstream therapeutic targeting rather than interventions directed toward specific downstream pathophysiological derangements.

View Fulltext