Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Todd M. Allen
Total Records ( 5 ) for Todd M. Allen
  Daniel Yerly , David Heckerman , Todd M. Allen , John V. Chisholm III , Kellie Faircloth , Caitlyn H. Linde , Nicole Frahm , Joerg Timm , Werner J. Pichler , Andreas Cerny and Christian Brander
  Hepatitis C virus (HCV) clearance has been associated with reduced viral evolution in targeted cytotoxic T-lymphocyte (CTL) epitopes, suggesting that HCV clearers may mount CTL responses with a superior ability to recognize epitope variants and prevent viral immune escape. Here, 40 HCV-infected subjects were tested with 406 10-mer peptides covering the vast majority of the sequence diversity spanning a 197-residue region of the NS3 protein. HCV clearers mounted significantly broader CTL responses of higher functional avidity and with wider variant cross-recognition capacity than nonclearers. These observations have important implications for vaccine approaches that may need to induce high-avidity responses in vivo.
  Victoria Kasprowicz , Julian Schulze zur Wiesch , Thomas Kuntzen , Brian E. Nolan , Steven Longworth , Andrew Berical , Jenna Blum , Cory McMahon , Laura L. Reyor , Nahel Elias , William W. Kwok , Barbara G. McGovern , Gordon Freeman , Raymond T. Chung , Paul Klenerman , Lia Lewis-Ximenez , Bruce D. Walker , Todd M. Allen , Arthur Y. Kim and Georg M. Lauer
  We monitored expression of PD-1 (a mediator of T-cell exhaustion and viral persistence) on hepatitis C virus (HCV)-specific CD8+ and CD4+ T cells from blood and liver during acute and chronic infections and after the resolved infection stage. PD-1 expression on HCV-specific T cells was high early in acute infection irrespective of clinical outcome, and most cells continued to express PD-1 in resolved and chronic stages of infection; intrahepatic expression levels were especially high. Our results suggest that an analysis of PD-1 expression alone is not sufficient to predict infection outcome or to determine T-cell functionality in HCV infection.
  Arne Schneidewind , Mark A. Brockman , John Sidney , Yaoyu E. Wang , Huabiao Chen , Todd J. Suscovich , Bin Li , Rahma I. Adam , Rachel L. Allgaier , Bianca R. Mothe , Thomas Kuntzen , Cesar Oniangue-Ndza , Alicja Trocha , Xu G. Yu , Christian Brander , Alessandro Sette , Bruce D. Walker and Todd M. Allen
  Control of human immunodeficiency virus type 1 (HIV-1) by HLA-B27-positive subjects has been linked to an immunodominant CD8+ cytotoxic T-lymphocyte (CTL) response targeting the conserved KK10 epitope (KRWIILGLNK263-272) in p24/Gag. Viral escape in KK10 typically occurs through development of an R264K substitution in conjunction with the upstream compensatory mutation S173A, and the difficulty of the virus to escape from the immune response against the KK10 epitope until late in infection has been associated with slower clinical progression. Rare alternative escape mutations at R264 have been observed, but factors dictating the preferential selection of R264K remain unclear. Here we illustrate that while all observed R264 mutations (K, G, Q, and T) reduced peptide binding to HLA-B27 and impaired viral replication, the replicative defects of the alternative mutants were actually less pronounced than those for R264K. Importantly, however, none of these mutants replicated as well as an R264K variant containing the compensatory mutation S173A. In assessing the combined effects of viral replication and CTL escape using an in vitro coculture assay, we further observed that the compensated R264K mutant also displayed the highest replication capacity in the presence of KK10-specific CTLs. Comparisons of codon usage for the respective variants indicated that generation of the R264K mutation may also be favored due to a G-to-A bias in nucleotide substitutions during HIV-1 replication. Together, these data suggest that the preference for R264K is due primarily to the ability of the S173A-compensated virus to replicate better than alternative variants in the presence of CTLs, suggesting that viral fitness is a key contributor for the selection of immune escape variants.
  Zabrina L. Brumme , Chanson J. Brumme , Jonathan Carlson , Hendrik Streeck , Mina John , Quentin Eichbaum , Brian L. Block , Brett Baker , Carl Kadie , Martin Markowitz , Heiko Jessen , Anthony D. Kelleher , Eric Rosenberg , John Kaldor , Yuko Yuki , Mary Carrington , Todd M. Allen , Simon Mallal , Marcus Altfeld , David Heckerman and Bruce D. Walker
  During acute human immunodeficiency virus type 1 (HIV-1) infection, early host cellular immune responses drive viral evolution. The rates and extent of these mutations, however, remain incompletely characterized. In a cohort of 98 individuals newly infected with HIV-1 subtype B, we longitudinally characterized the rates and extent of HLA-mediated escape and reversion in Gag, Pol, and Nef using a rational definition of HLA-attributable mutation based on the analysis of a large independent subtype B data set. We demonstrate rapid and dramatic HIV evolution in response to immune pressures that in general reflect established cytotoxic T-lymphocyte (CTL) response hierarchies in early infection. On a population level, HLA-driven evolution was observed in ~80% of published CTL epitopes. Five of the 10 most rapidly evolving epitopes were restricted by protective HLA alleles (HLA-B*13/B*51/B*57/B*5801; P = 0.01), supporting the importance of a strong early CTL response in HIV control. Consistent with known fitness costs of escape, B*57-associated mutations in Gag were among the most rapidly reverting positions upon transmission to non-B*57-expressing individuals, whereas many other HLA-associated polymorphisms displayed slow or negligible reversion. Overall, an estimated minimum of 30% of observed substitutions in Gag/Pol and 60% in Nef were attributable to HLA-associated escape and reversion events. Results underscore the dominant role of immune pressures in driving early within-host HIV evolution. Dramatic differences in escape and reversion rates across codons, genes, and HLA restrictions are observed, highlighting the complexity of viral adaptation to the host immune response.
  Toshiyuki Miura , Mark A. Brockman , Chanson J. Brumme , Zabrina L. Brumme , Jonathan M. Carlson , Florencia Pereyra , Alicja Trocha , Marylyn M. Addo , Brian L. Block , Alissa C. Rothchild , Brett M. Baker , Theresa Flynn , Arne Schneidewind , Bin Li , Yaoyu E. Wang , David Heckerman , Todd M. Allen and Bruce D. Walker
  Despite reports of viral genetic defects in persons who control human immunodeficiency virus type 1 (HIV-1) in the absence of antiviral therapy, the extent to which such defects contribute to the long-term containment of viremia is not known. Most previous studies examining for such defects have involved small numbers of subjects, primarily focused on subjects expressing HLA-B57, or have examined single viral genes, and they have focused on cellular proviral DNA rather than plasma viral RNA sequences. Here, we attempted viral sequencing from 95 HIV-1 elite controllers (EC) who maintained plasma viral loads of <50 RNA copies/ml in the absence of therapy, the majority of whom did not express HLA-B57. HIV-1 gene fragments were obtained from 94% (89/95) of the EC, and plasma viral sequences were obtained from 78% (61/78), the latter indicating the presence of replicating virus in the majority of EC. Of 63 persons for whom nef was sequenced, only three cases of nef deletions were identified, and gross genetic defects were rarely observed in other HIV-1 coding genes. In a codon-by-codon comparison between EC and persons with progressive infection, correcting for HLA bias and coevolving secondary mutations, a significant difference was observed at only three codons in Gag, all three of which represented the historic population consensus amino acid at the time of infection. These results indicate that the spontaneous control of HIV replication is not attributable to shared viral genetic defects or shared viral polymorphisms.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility