Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by C Huang
Total Records ( 3 ) for C Huang
  J Ding , G He , W Gong , W Wen , W Sun , B Ning , S Huang , K Wu , C Huang , M Wu , W Xie and H. Wang

Frequent exposure to nickel compounds has been considered as one of the potential causes of human lung cancer. However, the molecular mechanism of nickel-induced lung carcinogenesis remains obscure. In the current study, slight S-phase increase, significant G2/M cell cycle arrest, and proliferation blockage were observed in human bronchial epithelial cells (Beas-2B) upon nickel exposure. Moreover, the induction of cyclin D1 and cyclin E by nickel was shown for the first time in human pulmonary cells, which may be involved in nickel-triggered G1/S transition and cell transformation. In addition, we verified that hypoxia-inducible factor-1, an important transcription factor of nickel response, was not required for the cyclin D1 or cyclin E induction. The role of p53 in nickel-induced G2/M arrest was excluded, respecting that its protein level, ser15 phosphorylation, and transcriptional activity were not changed in nickel response. Further study revealed that cyclin A was not activated in nickel response, and cyclin B1, which not only promotes G2/M transition but also prevents M-phase exit of cells if not degraded in time, was up-regulated by nickel through a manner independent of hypoxia-inducible factor. More importantly, our results verified that overexpressed cyclin B1, veiling the effect of cyclin D1 or cyclin E, mediated nickel-caused M-phase blockage and cell growth inhibition, which may render pulmonary cells more sensitive to DNA damage and facilitates cancer initiation. These results will not only deepen our understanding of the molecular mechanism involved in nickel carcinogenecity, but also lead to the further study on chemoprevention of nickel-associated human cancer. (Cancer Epidemiol Biomarkers Prev 2009;18(6):1720–9)

  K Guo , X Wang , G Gao , C Huang , K. S Elmslie and B. Z. Peterson

We have found that phospholemman (PLM) associates with and modulates the gating of cardiac L-type calcium channels (Wang et al., Biophys J 98: 1149–1159, 2010). The short 17 amino acid extracellular NH2-terminal domain of PLM contains a highly conserved PFTYD sequence that defines it as a member of the FXYD family of ion transport regulators. Although we have learned a great deal about PLM-dependent changes in calcium channel gating, little is known regarding the molecular mechanisms underlying the observed changes. Therefore, we investigated the role of the PFTYD segment in the modulation of cardiac calcium channels by individually replacing Pro-8, Phe-9, Thr-10, Tyr-11, and Asp-12 with alanine (P8A, F9A, T10A, Y11A, D12A). In addition, Asp-12 was changed to lysine (D12K) and cysteine (D12C). As expected, wild-type PLM significantly slows channel activation and deactivation and enhances voltage-dependent inactivation (VDI). We were surprised to find that amino acid substitutions at Thr-10 and Asp-12 significantly enhanced the ability of PLM to modulate CaV1.2 gating. T10A exhibited a twofold enhancement of PLM-induced slowing of activation, whereas D12K and D12C dramatically enhanced PLM-induced increase of VDI. The PLM-induced slowing of channel closing was abrogated by D12A and D12C, whereas D12K and T10A failed to impact this effect. These studies demonstrate that the PFXYD motif is not necessary for the association of PLM with CaV1.2. Instead, since altering the chemical and/or physical properties of the PFXYD segment alters the relative magnitudes of opposing PLM-induced effects on CaV1.2 channel gating, PLM appears to play an important role in fine tuning the gating kinetics of cardiac calcium channels and likely plays an important role in shaping the cardiac action potential and regulating Ca2+ dynamics in the heart.

  Z. L Hu , C Huang , H Fu , Y Jin , W. N Wu , Q. J Xiong , N Xie , L. H Long , J. G Chen and F. Wang

Acid-sensing ion channels (ASICs) extensively exist in both central and peripheral neuronal systems and contribute to many physiological and pathological processes. The protein that interacts with C kinase 1 (PICK1) was cloned as one of the proteins interacting with protein kinase C (PKC) and colocalized with ASIC1 and ASIC2. Here, we used PICK1 knockout (PICK1-KO) C57/BL6 mice together with the whole cell patch clamp, calcium imaging, RT-PCR, Western blot, and immunocytochemistry techniques to explore the possible change in ASICs and the regulatory effects of PKC on ASICs. The results showed that PICK1 played a key role in regulation of ASIC functions. In PICK1-KO mouse cortical neurons, both the amplitude of ASIC currents and elevation of [Ca2+]i mediated by acid were decreased, which were attributable to the decreased expression of ASIC1a and ASIC2a proteins in the plasma membrane. PKC, a partner protein of PICK1, regulated ASIC functions via PICK1. The agonist and antagonist of PKC only altered ASIC currents and acid-induced increase in [Ca2+]i in wild-type, but not in KO mice. In conclusion, our data provided the direct evidence from PICK1-KO mice that a novel target protein, PICK1, would regulate ASIC function and membrane expression in the brain. In addition, PICK1 played the bridge role between PKC and ASICs.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility