Research Article
Comparative Effect of Tempe and Soymilk on Fasting Blood Glucose, Insulin Level and Pancreatic Beta Cell Expression (Study on Streptozotocin-Induced Diabetic Rats)
Pakistan Journal of Nutrition: Volume 14 (4): 239-246, 2015
Siti Harnina Bintari, Natalia Desy Putriningtyas, Kartika Nugraheni, Nyoman Suci Widyastiti, Edi Dharmana and Andrew Johan
Abstract
Hyperglycemia in diabetes mellitus due to pancreatic beta cell destruction can cause the raising of free radicals production. Soy isoflavone-containing diets have been reported to be beneficial in diabetes because they show potential antioxidant and antihyperglycemia activities. This study was conducted to analyze the difference between isoflavone aglycones in tempe and isoflavone glycosides in soymilk on beta cell function including insulin secretion, fasting blood glucose (FBG) and insulin expression of pancreatic beta cells. Thirty sprague dawley (SD) male rats were randomly divided into 3 following groups: (K1) diabetic control (P1) tempe flour 1.8 g (P2) soymilk powder 1.35 g. The treatment were given everyday for 28 days via oral gavage. FBG was measured using the GOD-PAP method, serum insulin was measured using ELISA, insulin expression analysis was done by immunohistochemical. Value of p less than 5% (p<0.05) was considered statistically significant. Tempe flour significantly decrease FBG level better than soy milk and control group (p<0.01). Although both groups showed an increase in serum insulin level after intervention, there was no significant different between them (p = 0.639). There were also a significantly decrease in FBG level on soymilk group compared to control (p<0.01). The mean insulin expression on K1, P1 and P2 were 2.67±2.34, 6.17±1.47 and 6.83±1.17, respectively. The insulin expression of both groups were not significantly different (p = 0.405). It is concluded that tempe flour shows a better anti-diabetic activity than soymilk.
How to cite this article:
Siti Harnina Bintari, Natalia Desy Putriningtyas, Kartika Nugraheni, Nyoman Suci Widyastiti, Edi Dharmana and Andrew Johan, 2015. Comparative Effect of Tempe and Soymilk on Fasting Blood Glucose, Insulin Level and Pancreatic Beta Cell Expression (Study on Streptozotocin-Induced Diabetic Rats). Pakistan Journal of Nutrition, 14: 239-246.
DOI: 10.3923/pjn.2015.239.246
URL: https://scialert.net/abstract/?doi=pjn.2015.239.246
References
Allred, D.C., 1998. Scoring immunostained slides. Mod. Pathol., 11: 155-168.
American Diabetes Association, 2003. Management of dyslipidemia in adults with diabetes. Diabetes Care, 26: 83-86.
CrossRefDirect Link
American Diabetes Association, 2010. Standards of medical care in diabetes-2010. Diabetes Care, 33: S11-S61.
CrossRefDirect Link
American Diabetes Association, 2012. Diagnosis and classification of diabetes mellitus. Diabetes Care, 35: S64-S71.
CrossRefDirect Link
Bavia, A.C.F., C.E. da Silva, M.P. Ferreira, R.S. Leite, J.M.G. Mandarino and M.C. Carrao-Panizzi, 2012. Chemical composition of tempeh from soybean cultivars specially developed for human consumption. Food Sci. Technol., 32: 613-620.
CrossRefDirect Link
Bintari, S.H., 2013. Pasteurization for hygienic tempe: Study case of Krobokan Tempe yesterday and today. GSTF Int. J. BioSci., 2: 39-44.
Direct Link
Cassidy, A., J.E. Brown, A. Hawdon, M.S. Faughnan and L.J. King et al., 2006. Factors affecting the bioavailability of soy isoflavones in humans after ingestion of physiologically relevant levels from different soy foods. J. Nutr., 136: 45-51.
Direct Link
Cheng, S.Y., N.S. Shaw, K.S. Tsai and C.Y. Chen, 2004. The hypoglycemic effects of soy isoflavones on postmenopausal women. J. Women's Health, 13: 1080-1086.
CrossRefDirect Link
Day, A.J., F.J. Canada, J.C. Diaz, P.A. Kroon and R. Mclauchlan et al., 2000. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett., 468: 166-170.
CrossRefPubMedDirect Link
Esteves, E.A., J. Bressan, N.M.B. Costa, H.S.D. Martino, S.S. Donkin and J.A. Story, 2011. Modified soybean affects cholesterol metabolism in rats similarly to a commercial cultivar. J. Med. Food, 14: 1363-1369.
CrossRefDirect Link
Fu, Z. and D. Liu, 2009. Long-term exposure to genistein improves insulin secretory function of pancreatic β-cells. Eur. J. Pharmacol., 616: 321-327.
CrossRefDirect Link
Fu, Z., W. Zhang, W. Zhen, H. Lum, J. Nadler and J. Bassaganya-Riera et al., 2010. Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology, 151: 3026-3037.
CrossRefDirect Link
Gilbert, E.R. and D. Liu, 2013. Anti-diabetic functions of soy isoflavone genistein: Mechanisms underlying its effects on pancreatic β-cell function. Food Funct., 4: 200-212.
CrossRefDirect Link
Goldberg, I.J., 2001. Diabetic dyslipidemia: Causes and consequences. J. Clin. Endocrinol. Metab., 86: 965-971.
CrossRefPubMedDirect Link
Hanhineva, K., R. Torronen, I. Bondia-Pons, J. Pekkinen, M. Kolehmainen, H. Mykkanen and H. Poutanen, 2010. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci., 11: 1365-1402.
CrossRefPubMedDirect Link
Hsu, C.S., W.C. Chiu and S.L. Yeh, 2003. Effects of soy isoflavone supplementation on plasma glucose, lipids and antioxidant enzyme activities in streptozotocin-induced diabetic rats. Nutr. Res., 23: 65-75.
CrossRefDirect Link
IEA., 2013. Consensus of management and prevention of diabetes mellitus type 2 in Indonesia. Indonesian Endocrinology Association (IEA), Indonesia.
Jonas, J.C., T.D. Plant, P. Gilon, P. Detimary, M. Nenquin and J.C. Henquin, 1995. Multiple effects and stimulation of insulin secretion by the tyrosine kinase inhibitor genistein in normal mouse islets. Br. J. Pharmacol., 114: 872-880.
CrossRefDirect Link
Kalaiselvan, V., M. Kalaivani, A. Vijayakumar, K. Sureshkumar and K. Venkateskumar, 2010. Current knowledge and future direction of research on soy isoflavones as a therapeutic agents. Pharmacogn. Rev., 4: 111-117.
CrossRefDirect Link
Kaneto, H., Y. Kajimoto, J. Miyagawa, T. Matsuoka and Y. Fujitani et al., 1999. Beneficial effects of antioxidants in diabetes: Possible protection of pancreatic beta-cells against glucose toxicity. Diabetes, 48: 2398-2406.
CrossRefPubMedDirect Link
Kavanagh, K., K.L. Jones, L. Zhang, D.M. Flynn, M.K. Shadoan and J.D. Wagner, 2008. High isoflavone soy diet increases insulin secretion without decreasing insulin sensitivity in premenopausal nonhuman primates. Nutr. Res., 28: 368-376.
CrossRefDirect Link
King, R.A. and D.B. Brusill, 1998. Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. Am. J. Clin. Nutr., 67: 867-872.
Direct Link
Kwon, D.Y., J.W. Daily III, H.K. Kim and S. Park, 2010. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr. Res., 30: 1-13.
CrossRefDirect Link
Kwon, D.Y., S.M. Hong, I.S. Ahn, M.J. Kim, H.J. Yang and S. Park, 2011. Isoflavonoids and peptides from meju, long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro. Nutrition, 27: 244-252.
CrossRefDirect Link
Larkin, T., W.E. Price and L. Astheimer, 2008. The key importance of soy isoflavone bioavailability to understanding health benefits. Crit. Rev. Food Sci. Nutr., 48: 538-552.
CrossRefDirect Link
Lee, D.S. and S.H. Lee, 2001. Genistein, a soy isoflavone, is a potent α-glucosidase inhibitor. FEBS Lett., 501: 84-86.
CrossRefDirect Link
Lee, J.S., 2006. Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats. Life Sci., 79: 1578-1584.
CrossRefPubMedDirect Link
Liu, D., W. Zhen, Z. Yang, J.D. Carter, H. Si and K.A. Reynolds, 2006. Genistein acutely stimulates insulin secretion in pancreatic β-cells through a cAMP-dependent protein kinase pathway. Diabetes, 55: 1043-1050.
CrossRefDirect Link
Lu, M.P., R. Wang, X. Song, R. Chibbar, X. Wang, L. Wu and Q.H. Meng, 2008. Dietary soy isoflavones increase insulin secretion and prevent the development of diabetic cataracts in streptozotocin-induced diabetic rats. Nutr. Res., 28: 464-471.
CrossRefDirect Link
MOH., 2007. Basic health research Indonesia in 2007: Survey report. Ministry of Health, National Institute of Health Research and Development, Jakarta.
McCue, P., Y.I. Kwon and K. Shetty, 2005. Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean. Asia Pac. J. Clin. Nutr., 14: 145-152.
PubMedDirect Link
MoRT., 2013. Soybean powder for drink. Ministry of Reaserch and Technology (MoRT), Indonesia.
Nakajima, N., N. Nozaki, K. Ishihara, A. Ishikawa and H. Tsuji, 2005. Analysis of isoflavone content in tempeh, a fermented soybean and preparation of a new isoflavone-enriched tempeh. J. Biosci. Bioeng., 100: 685-687.
CrossRefDirect Link
Nout, M.J.R. and J.L. Kiers, 2005. Tempe fermentation, innovation and functionality: Update into the third millenium. J. Applied Microbiol., 98: 789-805.
CrossRefDirect Link
Piskula, M.K., J. Yamakoshi and Y. Iwai, 1999. Daidzein and genistein but not their glucosides are absorbed from the rat stomach. FEBS Lett., 447: 287-291.
CrossRefDirect Link
Sheetz, M.J. and G.L. King, 2002. Molecular understanding of hyperglycemia's adverse effects for diabetic complications. J. Am. Med. Assoc., 288: 2579-2588.
CrossRefPubMedDirect Link
Shim, J.Y., K.O. Kim, B.H. Seo and H.S. Lee, 2007. Soybean isoflavone extract improves glucose tolerance and raises the survival rate in streptozotocin-induced diabetic rats. Nutr. Res. Pract., 1: 266-272.
CrossRefDirect Link
Song, T., K. Barua, G. Buseman and P.A. Murphy, 1998. Soy isoflavone analysis: Quality control and a new internal standard. Am. J. Clin. Nutr., 68: 1474S-1479S.
Direct Link
Steele, C., W.A. Hagopian, S. Gitelman, U. Masharani and M. Cavaghan et al., 2004. Insulin secretion in type 1 diabetes. Diabetes, 53: 426-433.
CrossRefDirect Link
Sugano, M., 2005. Nutritional Implications of Soy. In: Soy in Health and Disease Prevention, Sugano, M. (Ed.). CRC Press, Boca Raton.
Szkudelski, T., 2001. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res., 50: 537-546.
PubMedDirect Link
Szkudelski, T., 2012. Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp. Biol. Med., 237: 481-490.
CrossRefPubMedDirect Link
Wu, C., J. Shen, P. He, Y. Chen and L. Li et al., 2012. The α-glucosidase inhibiting isoflavones isolated from Belamcanda chinensis leaf extract. Rec. Nat. Prod., 6: 110-120.
Direct Link
Yang, B., Y. Chen, T. Xu, Y. Yu, T. Huang, X. Hu and D. Li, 2011. Systematic review and meta-analysis of soy products consumption in patients with type 2 diabetes mellitus. Asia Pac. J. Clin. Nutr., 20: 593-602.
PubMedDirect Link