• [email protected]
  • +971 507 888 742
Submit Manuscript
SciAlert
  • Home
  • Journals
  • Information
    • For Authors
    • For Referees
    • For Librarian
    • For Societies
  • Contact
  1. International Journal of Pharmacology
  2. Vol 15 (1), 2019
  3. 56-65
  • Online First
  • Current Issue
  • Previous Issues
  • More Information
    Aims and Scope Editorial Board Guide to Authors Article Processing Charges
    Submit a Manuscript

International Journal of Pharmacology

Year: 2019 | Volume: 15 | Issue: 1 | Page No.: 56-65
DOI: 10.3923/ijp.2019.56.65
crossmark

Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
Research Article

Possible Mechanism(s) Underlying the Antidiarrheal, Antispasmodic and Bronchodilatory Activities of the Pericarp of Albizia lebbeck

Aslam Khan, Najeeb-ur-Rehman Najeeb-ur-Rehman's LiveDNA, Anwarul-Hassan Gilani Anwarul-Hassan  Gilani's LiveDNA, Zunirah Ahmed, Shaza Al-Massarani, Ali. El-Gamal and Mohamed Farag

ABSTRACT


Background and Objectives: Albizia lebbeck is famous plant for its medicinal use in hyperactive gut and airways disorders. The objective of this study was therefore to provide a scientific rationale for the medicinal utility of Albezia lebbeck in diarrhea, gut spasm and bronchospasm, with the possible mode of action explored. Materials and Methods: The hydro-alcoholic extract of the pericarp of Albezia lebbeck (Al.Pericarp) was tested using in-vivo and in-vitro assays. Results: Albezia Pericarp, at 100 and 300 mg kg–1 showed 40 and 80% protection of castor oil-induced diarrhea in mice, whereas loperamide (10 mg kg–1) showed complete protection. In isolated rabbit jejunum, Albezia. Pericarp completely inhibited spontaneous, carbachol (CCh; 1 μM) and low K+ (25 mM)-induced contractions but had only a weak effect against high K+ (80 mM). When tested for bronchodilatory activity in anesthetized rats, Albezia. Pericarp (3-30 mg kg–1) inhibited the CCh-induced bronchospasm in a dose-dependent manner, similar to aminophylline. In isolated guinea-pig tracheal preparations, Al.Pericarp selectively inhibited contractions induced by CCh and low K+. The inhibitory effect of Al.Pericarp against low K+ was reversed in the presence of tetraethylammonium (TEA), a non-specific blocker of K+-channels, whereas no significant inhibition was observed in the presence of glibenclamide (Gb) or 4-aminopyridine (4-AP), which are ATP-dependent and voltage-dependent K+ channel blockers, respectively. The plant extract (0.03 and 0.01 mg mL–1) also potentiated isoprenaline-inhibitory concentration-response curves (CRCs) by a shift to the left, in both jejunum and trachea, showing phosphodiesterase inhibition, similar to papaverine. Conclusion: These results indicated that the crude extract of Albizia lebbeck Pericarp possesses anti diarrheal, antispasmodic and bronchodilatory activities, mediated possibly through dual pathways, namely activation of a non-specific type of K+-channels and inhibition of phosphodiesterase enzyme. Thus, this study offered a sound basis for Albizia lebbeck to be developed for hyperactive gut and airways disorders.
PDF Abstract XML References Citation
Received: March 15, 2018;   Accepted: September 12, 2018;   Published: December 15, 2018
Copyright: © 2019. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

How to cite this article

Aslam Khan, Najeeb-ur-Rehman, Anwarul-Hassan Gilani, Zunirah Ahmed, Shaza Al-Massarani, Ali. El-Gamal and Mohamed Farag, 2019. Possible Mechanism(s) Underlying the Antidiarrheal, Antispasmodic and Bronchodilatory Activities of the Pericarp of Albizia lebbeck. International Journal of Pharmacology, 15: 56-65.

DOI: 10.3923/ijp.2019.56.65

URL: https://scialert.net/abstract/?doi=ijp.2019.56.65

INTRODUCTION


The genus Albizia (Fabaceae) comprises approximately 150 species, mostly trees and shrubs native to tropical and subtropical regions of Asia and Africa1. Albizia lebbeck Benth. was imported many years ago from South Asia and adapted well to the harsh environmental conditions of the central part of Saudi Arabia. Albizia lebbeck is a tree well known in the Indian subcontinent for its wide range of medicinal uses. The tribal people in Himachal Pradesh and Kashmir use the plant to treat inflammation2-4, while the tribes of Tamil Nadu utilize the plant in the treatment of bone fractures5. Albizia lebbeck is used in South Asian folk medicine to treat several inflammatory pathologies such as diarrhea6,7, asthma, bronchosis8, arthritis and burns9,10. In addition, the flowers are being commonly used to treat anxiety, depression and insomnia in traditional Chinese medicine11.

Albizia lebbeck has previously been investigated for a number of pharmacological activities using in vitro and in vivo experiments. In Baruach et al.12 reported that A. lebbeck inhibits passive cutaneous anaphylaxis and mast cell degranulation in rats, in addition to its protective effect in sensitized guinea pigs from antigen induced anoxic convulsion. Recently, it was found that the alcoholic extract of A. lebbeck has an antihistaminic property, by neutralizing the histamine directly or due to a corticotrophic action, as evidenced by raising cortisol levels in the plasma13. Moreover, saponins from A. lebbeck have been claimed to be useful in treatment of Alzheimer’s and Parkinson’s diseases14. Leaves have been claimed to have anticonvulsant activity15and a nootropic effect16, which may be due to the presence of certain important compounds like alkaloids and flavonoids. The aqueous extract of A. lebbeck leaves has been shown to have antioxidant activity in diabetic rats17. The seeds were shown to have anti-fertility effects on male rats18, while the seeds extract of A. lebbeck has been investigated for its antidiarrheal activity, using the conventional rodents models of diarrhea19. Some reports also showed beneficial effects of A. lebbeck in antigen challenged guinea pigs20 and in bronchial asthma patients21, in addition to its anti-inflammatory22,23 and hypoglycemic24-26 actions.

Despite the extensive biological evaluation of this plant, where it had been tested for a number of pharmacological activities including antidiarrheal19 and antiasthmatic21 properties, there are no detailed studies available that look into the possible mechanism(s), responsible for its antispasmodic, antidiarrheal and bronchodilatory activities; therefore, the aim of this study was to evaluate the hydro-alcoholic crude extract of its pericarp for antidiarrheal, antispasmodic and bronchodilator effects with detailed possible mode of action. Interestingly, the crude extract of Albizia lebbeck possesses antispasmodic and bronchodilatory activities mediated through a unique combination of activities, namely activation of K+-channels and inhibition of phosphodiesterase, which provides sound evidence for the medicinal use of the plant in gut and airways disorders.

MATERIALS AND METHODS


Plant material: The fruits of A. lebbeck were obtained from trees grown in the district of Riyadh, Saudi Arabia, during the year 2012. Taxonomical identity was kindly verified by Dr. Mohammed Yousef, Pharmacognosy Department, College of Pharmacy, King Saud University, Saudi Arabia. A voucher specimen number 16182 was deposited at the department.

Extract preparation and chemicals: The seeds were removed manually from fruits, to isolate the pericarp. The air-dried powdered pericarp (200 g) was exhaustively extracted with 70% ethanol in a continuous extraction apparatus for 8 h. The solvent was distilled off under reduced pressure to give 20 g of hydro-alcoholic extract (Al.Pericarp).

The following reference chemicals were obtained from the sources specified: acetylcholine chloride, glibenclamide (Gb), 4-aminopyridine, tetraethylammonium (TEA), loperamide hydrochloride, potassium chloride, aminophylline, carbamylcholine (Sigma Chemical Company, St. Louis, MO, USA) and castor oil (Karachi Chemical Industries, Karachi, Pakistan). Chemicals used for making physiological salt solutions including potassium chloride, calcium chloride, glucose, magnesium chloride, magnesium sulfate, potassium dihydrogen phosphate, sodium bicarbonate, sodium dihydrogen phosphate and sodium chloride were obtained from Merck (Darmstadt, Germany). All chemicals used were of the highest purity grade. Stock solutions of all the chemicals were made in distilled water for in vitro experiments and the dilutions were made fresh in normal saline for in vivo experiments, on the day of experiment.

Animals: BALB/c mice (weighing 20-25 g), Wistar rats (weighing 200-250 g), locally bred guinea-pigs (weighing 400-600 g) and rabbits (weighing 1-1.5 kg) of either sex were housed at the animal house of the Aga Khan University under a controlled environment of 23-25°C and a 12 h light-dark cycle was maintained in the animal house. The animals were kept in respective cages with sawdust (changed every 48 h) and were fasted for 24 h before starting the experiment. In routine, they were given tap water ad libitum and a standard diet consisting of g kg–1: flour 380, fiber 380, molasses 12, NaCl 5.8, nutrivet L 2.5, potassium metabisulfite 1.2, vegetable oil 38, fish meal 170 and powdered milk 150. The experiments were performed according to the rulings of the Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council27.

In vivo experiments
Antidiarrheal activity: The antidiarrheal activity was studied using castor oil-induced diarrhea in mice as described previously28. Mice (20-25 g) of either sex were fasted for 24 h before the experiment. The animals were housed in individual cages and divided in four equal groups, each containing 5 animals. The first group received saline (10 mL kg–1, p.o.), acting as negative control. The second and third groups received Al.Pericarp, 100 and 300 mg kg–1, respectively. The fourth group received loperamide (10 mg kg–1), as positive control. One hour after the treatment, each animal received castor oil (10 mL kg–1, p.o.) through a feeding needle. After 4 h of the castor oil dosing, the individual mouse cages were inspected for the presence and absence of typical diarrheal droppings; the absence of diarrheal droppings was noted as a positive result, indicating protection from diarrhea.

Bronchodilatory activity: Rats were anaesthetized with sodium thiopental (Pentothal, 80-100 mg kg–1, i.p.), then intubated with a tracheal tube and ventilated with a volume ventilator (Miniature ideal pump, Bioscience, UK) adjusted at a rate of 70-80 strokes/min, to deliver 7-10 mL kg–1 of room air as described previously29. A polyethylene catheter was inserted into the jugular vein for drug administration. Changes in airway resistance (mmHg) were measured by a pressure transducer (MLT-1199) connected to a side arm of the tracheal cannula and recorded by Power Lab 4/25 with running chart software via a Quad bridge amplifier (AD Instruments, Bella Vista, NSW, Australia). Broncho constriction was induced with CCh (100 μg kg–1), which was reversed within 7-10 min. The test drug was given to the animals 5-8 min prior to administration of CCh. The responses were expressed as reduction (%) of the CCh-induced bronchospasm.

In vitro experiments
Effect on rabbit jejunum: Rabbits were sacrificed by cervical dislocation and the abdomen was cut open and the jejunum was dissected out as described previously30. Jejunal preparations of 2-3 cm in length were mounted in 10 mL tissue baths containing Tyrode’s solution maintained at 37°C and aerated with a mixture of 5% carbon dioxide and 95% oxygen (carbogen). The composition of Tyrode’s solution (mM) was: KCl 2.68, NaCl 136.9, MgCl2 1.05, NaHCO3 11.90, NaH2PO4 0.42, CaCl2 1.8 and glucose 5.55 (pH 7.4). A pre load of 1 g was applied to each tissue and the contractile responses were recorded using an isotonic transducer (50-6360, Harvard Apparatus, Holliston, MA, USA) coupled with a Power Lab (ML-845) data acquisition system (AD Instruments; Sydney, Australia) and a computer using chart software (version 5.3). The tissues were allowed to equilibrate for a period of 30 min and then stabilized with a sub-maximal concentration of acetylcholine (ACh, 0.3 μM). The tissues were presumed stable only after the reproducibility of the said responses. The test material was examined later for any gut relaxant effect on spontaneous contractions of jejunal preparations. To assess the involvement of a K+-channel opening (KCO) effect31, phosphodiesterase (PDE)-inhibitory32 and Ca++ antagonist-like mechanisms33, the antispasmodic effect of the plant extract was tested on low K+ (25 mM), CCh (1 μM) and high K+ (80 mM)-induced contractions, respectively, in isolated jejunal preparations. Following a sustained contraction in response to K+ and CCh, the test material was added in a cumulative fashion, to obtain concentration-dependent inhibitory responses. The relaxation of the tissue preparation was expressed as percentage of the control contraction as mediated by the added spasmogen.

To further characterize the type of K+-channels involved in the antispasmodic effect, the inhibitory effect of the plant extract was reproduced in preparations pretreated with selective antagonists of the K+-channels, such as glibenclamide (an ATP-dependent K+-channel antagonist34), 4-aminopyridine (a voltage-dependent blocker of K+-channels)35 and TEA (a non-specific K+-channel blocker)36. The PDE-inhibitory effect was studied indirectly through constructing isoprenaline-induced inhibitory CRCs against CCh-induced contractions in the absence and presence of the test substance, as PDE-inhibitors are known to potentiate the effect of isoprenaline37, 38.

Effect on guinea-pig tracheal preparations: Tracheas were dissected out of guinea-pigs after cervical dislocation of the animals and kept in Kreb’s solution. The tracheal tube was cut into rings, 2-3 mm wide, each containing about two cartilages39. Each ring was opened by a longitudinal cut on the ventral side opposite to the smooth muscle layer, forming a tracheal strip with a central part of smooth muscle in between the cartilaginous portions on the edges. The preparation was then mounted in a 20 mL tissue bath containing Kreb’s solution, maintained at 37°C and aerated with carbogen. The composition of Kreb’s solution was (mM): NaCl 118.2, NaHCO3 25.0, CaCl2 2.5, KCl 4.7, KH2PO4 1.3, MgSO4 1.2 and glucose 11.7 (pH 7.4). A tension of 1 g was applied to each of the tracheal strips and was kept constant throughout the experiment. The tissue was equilibrated for 1 h before the addition of any drug. CCh (1μM), low K+ (25 mM) and high K+ (80 mM) were used to stabilize the respective preparations until constant responses of each agonist were achieved (usually after 3-4 concentrations). Then sustained contractions were obtained and the relaxant effect of the test substance was assessed by adding it in a cumulative fashion. Isometric responses were recorded using an isometric transducer (50-7996, Harvard Apparatus, Holliston, MA, USA), attached to the setup as described for the intestinal preparations.

To study the bronchodilatory effect of the test material and its further mechanism(s), the method detailed in the section on the isolated jejunum was followed.

Statistical analysis: The data expressed are Mean±Standard error of mean (SEM, n = number of experiments) and the median effective concentrations (EC50 values) with 95% confidence intervals (CI). The concentration-response curves (CRCs) were analyzed by non-linear regression. The Chi-square-test was applied to assess the antidiarrheal effect, while one-way analysis of variance (ANOVA) followed by Dunnett’s test was used to assess the bronchodilator activity. All the graphs, calculations and statistical analysis were performed using GraphPad Prism 4 for Windows (GraphPad Software, San Diego, California, USA).

RESULTS


In vivo findings
Effect on castor oil-induced diarrhea in mice: In our experimental settings, Al.Pericarp showed a dose-dependent antidiarrheal effect in terms of protection (%) against castor oil-induced diarrhea. All animals in the castor oil-treated group showed diarrhea. Animal groups pretreated with Al.Pericarp showed 40 and 80% protection from diarrhea at respective doses of 100 and 300 mg kg–1, while the group pretreated with loperamide (10 mg kg–1) exhibited 100% protection. Further details are presented in Table 1.

Effect on carbachol-induced bronchospasm: Al.Pericarp (3-30 mg kg–1) caused a dose-dependent protection against the CCh (100 μg kg–1)-induced increase in respiratory pressure of anaesthetized rats, similar to aminophylline (Fig. 1).

Table 1: Antidiarrheal effect of the hydro-alcoholic extract of the pericarp of A. lebbeck (Al.Pericarp) in mice with castor oil (10 mL kg–1)-induced diarrhea
Image for - Possible Mechanism(s) Underlying the Antidiarrheal, Antispasmodic and Bronchodilatory Activities of the Pericarp of Albizia lebbeck
ap<0.05 and bp<0.01vs. Saline+castor oil treated group (c2-test)

Image for - Possible Mechanism(s) Underlying the Antidiarrheal, Antispasmodic and Bronchodilatory Activities of the Pericarp of Albizia lebbeck
Fig. 1(a-b): Dose-dependent suppressant effect of the (a) Crude extract of pericarp of A. lebbeck (Al.Pericarp) and (b) Aminophylline on carbachol (CCh, 100 μg kg–1)-induced broncho-constriction in anaesthetized rats. Values shown are Mean±SEM from 4-5 determinations

Image for - Possible Mechanism(s) Underlying the Antidiarrheal, Antispasmodic and Bronchodilatory Activities of the Pericarp of Albizia lebbeck

Fig. 2(a-b):
Dose-dependent inhibitory effect of the crude extract of pericarp of A. lebbeck (Al.Pericarp) on (a) Spontaneous, CCh (1 μM), low K+ (25 mM) and high K+ (80 mM)-induced contractions and (b) Against low K+-induced contractions in the absence and presence of glibenclamide (Gb 10 μM), 4-aminopyridine (4-AP 1 mM) and tetraethyl ammonium (TEA 10 mM), in isolated rabbit jejunum preparations. Symbols represent Mean±SEM, n = 4-5

In vitro findings
Effect on rabbit jejunum: Al.Pericarp caused a dose-dependent inhibition of spontaneous, CCh (1 μM) and low K+(25 mM)-induced contractions of isolated rabbit jejunum preparations, with respective EC50 values of 3.12 (2.98-3.27, n = 5), 0.54 (0.48-0.59, n = 5) and 0.74 mg mL–1 (0.68-0.78, n = 5), whereas a partial inhibitory effect was observed against high K+ (80 mM) at rather larger doses as shown in Fig. 2. When tested in tissues pre-treated with Gb (10 μM), 4-AP (1 mM) or TEA (10 mM), the inhibitory effect of Al.Pericarp against low K+ was significantly reduced (p>0.05) in the presence of TEA, whereas glibenclamide and 4-AP did not show any significant (p>0.05) effect. Pre-treatment of jejunal preparations with Al.Pericarp shifted the isoprenaline-induced inhibitory CRCs to the left in a concentration-dependent manner (0.03 and 0.1 mg mL–1), similar to that caused by papaverine (1 and 3 μM) as shown in Fig. 3, thus exhibiting a potentiating effect.

Effect on guinea-pig trachea: When tested on guinea-pig tracheal strips, Al.Pericarp caused complete relaxation of CCh and low K+ (25 mM)-induced contractions by showing comparable potencies, with respective EC50 values of 0.40 (0.33-0.46, n = 4) and 0.64 mg mL–1 (0.54-0.68, n = 4), whereas it was less potent against high K+showing only a partial effect (Fig. 4). The tracheal strips were pretreated with Gb (10 μM), 4-AP (1 mM) or TEA (10 mM) to assess the type of K+ channels involved. The inhibitory effect of Al.Pericarp against low K+ was significantly reduced (p<0.05) in the presence of TEA, whereas Gb and 4-AP did not show any (p>0.05) effect on the action of Al.Pericarp. Pretreatment of tracheal preparations with Al.Pericarp shifted the isoprenaline-induced inhibitory CRCs to the left in a concentration-dependent manner (0.03 and 0.1 mg mL–1), similar to that caused by papaverine (1.0 and 3.0 μM) as shown in Fig. 5, thus exhibiting a potentiating effect.

DISCUSSION


In castor oil-induced diarrhea in mice, Al.Pericarp caused protection, similar to loperamide, a known antidiarrheal agent40. When studied for its bronchodilator activity, the plant extract caused a dose-dependent protection against CCh-induced broncho constriction in anesthetized rats, similar to the aminophylline41. In isolated rabbit jejunal preparations, Al.Pericarp used a dose-dependent inhibition of spontaneous contractions thus showing antispasmodic effect. Castor oil is known to increase intestinal fluids and causes diarrhea indirectly through the formation of ricinoleic acid, which ultimately alters the electrolyte and water transport and elicits excitations in the transverse and distal segments of the colon42,43.

Image for - Possible Mechanism(s) Underlying the Antidiarrheal, Antispasmodic and Bronchodilatory Activities of the Pericarp of Albizia lebbeck
Fig. 3(a-b):
Inhibitory concentration response curves (CRCs) of isoprenaline against carbachol (CCh)-induced contractions in the absence and presence of different concentrations of (a) crude extract of pericarp of A. lebbeck (Al.Pericarp) and (b) papaverine, in isolated rabbit jejunum preparations. Values shown are Mean±SEM from 4-5 determinations

Image for - Possible Mechanism(s) Underlying the Antidiarrheal, Antispasmodic and Bronchodilatory Activities of the Pericarp of Albizia lebbeck
Fig. 4(a-b): Dose-dependent inhibitory effects of the crude extract of pericarp of A. lebbeck (Al.Pericarp) on (a) CCh (1 μM), low K+ (25 mM) and high K+ (80 mM)-induced contractions and (b) Against low K+-induced contractions in the absence and presence of glibenclamide (Gb 10 μM), 4-aminopyridine (4-AP 1 mM) and tetraethylammonium (TEA 10 mM), in isolated guinea-pig tracheal preparations. Values shown are Mean±SEM from 4-5 determinations

The observed antidiarrheal and bronchodilator effects of the Al.Pericarp appear to be mediated through the presence of antispasmodic components in Albizia lebbeck.

To explore the possible underlying mechanism(s) of its antidiarrheal effect, the plant extract was studied on isolated jejunal preparations from rabbits, while isolated guinea-pig tracheal preparations were used to explore possible mechanism for its bronchodilator effect.

Image for - Possible Mechanism(s) Underlying the Antidiarrheal, Antispasmodic and Bronchodilatory Activities of the Pericarp of Albizia lebbeck
Fig. 5(a-b): Inhibitory CRCs of isoprenaline against carbachol (CCh)-induced contractions in the absence and presence of different concentrations of (a) Crude extract of pericarp of A. lebbeck (Al.Pericarp) and (b) Papaverine, in isolated guinea-pig tracheal preparations. Values shown are Mean±SEM from 4-5 determinations

In our earlier studies, it observed that the spasmolytic effect of medicinal plants is usually mediated through K+-channel opening31,44, phosphodiesterase-inhibitory45,46 or Ca++ channel blocking39,46 effects. To assess whether the spasmolytic effects of Al.Pericarp was also mediated via similar mechanism(s), it was tested on CCh (1 μM), low K+ (25 mM) and high K+ (80 mM)-induced contractions. Interestingly, the plant extract showed higher potency with complete inhibition of the contractions induced by CCh and low K+, in contrast to high K+-induced contractions, where only weak effects were observed, even at very high doses. The selective inhibitory response of the test material against low K+ indicates the presence of K+ channel opener (KCO)-like spasmolytic activity. To confirm the KCO activity and the nature of K+ channels involved as one of the antispasmodic mechanisms in Al.Pericarp, the inhibitory CRCs of the plant against low K+ were reconstructed in the presence of specific blockers of K+ channels, namely Gb (a blocker of ATP-dependent K+-channels, KATP)34, 4-AP (a blocker of voltage-dependent K+-channels, Kv)35 and TEA (a non-specific K+-channel blocker36). Interestingly, the inhibitory effects of the plant extract on low K+ induced contractions was inhibited in the presence of TEA, while Gb and 4-AP had no effect, which indicates that the antispasmodic effects of the plant was solely mediated through the activation of non-specific K+ channels. The plant extract also inhibited CCh-induced contractions in isolated jejunal preparations, which indicates the involvement of the additional antispasmodic mechanism of PDE-inhibition, as PDE-inhibitors are also known to inhibit CCh-induced contractions in smooth muscles47. Application of CCh to smooth muscles of gut preparation was known to cause contraction by stimulating phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis, inositol 1,4,5-trisphosphate (IP3) production and phosphatidic acid (PA) formation, while addition of isoprenaline produces an increase in cyclic adenosine monophosphate (cAMP) levels in smooth muscles of tissues pre-contracted with CCh, thus causing a sequential attenuation of PIP2-hydrolysis, IP3-production and PA formation, which consequently leads to relaxation48. Hence, a substance that causes potentiation of the inhibitory effect of isoprenaline, possibly by augmenting the increase in cAMP initially achieved by isoprenaline, could be speculated to possess PDE-inhibitory activity, as PDE-inhibitors are known to enhance tissue cAMP levels, though through a different mechanism49. To see, whether the inhibitory effect of the plant extract against CCh-induced contractions in rabbit jejunum involves a PDE-inhibitory-like effect, the inhibitory CRCs of isoprenaline were constructed in the absence and presence of low doses of the extract (0.03 and 0.1 mg mL–1), which shifted the inhibitory curves of isoprenaline to the left, thus showing potentiation, similar to papaverine, indicating a papaverine-like PDE-inhibitory activity50.

The bronchodilatory effect of the plant extract seen in anesthetized rats was further tested for its mechanism(s) in isolated tracheal preparations of guinea-pig. The mechanism(s) observed in the bronchodilatory effects were similar to that observed earlier in jejunum, thus showing the involvement of non-specific K+-channels, in addition to PDE-inhibition.

CONCLUSION


In the in vivo antidiarrheal and bronchodilator animal models, the aqueous-alcoholic crude extract of A. lebbeck pericarp showed dose-dependent antidiarrheal and bronchodilator actions. The in vitro experiments on isolated gut and tracheal preparations showed that the antispasmodic and bronchodilator actions of the plants extract were mediated through a combination of K+channel opening and phosphodiesterase inhibition, which may explain the possible underlying mechanisms for its antidiarrheal and anti-asthmatic use.

This study provides a sound pharmacological basis for the medicinal use of A. lebbeck in hyperactive gut and airways disorders, due to its multi-targeted actions. Furthermore, this study recommends Al.Pericarp as a strong candidate for further clinical studies.

SIGNIFICANCE STATEMENT


This study discovers underlying mechanisms for the therapeutic potential of a famous medicinal plant, Albizia lebbeck for its antidiarrheal, antispasmodic and bronchodilator activities, acting through multiple target sites thus making it effective and safe remedy for diarrhea and asthma. Currently available drugs are not only costly but also exhibit multiple side-effects and this study will help the researchers to design clinical studies for development of plant extracts usable for such diseases.

REFERENCES


  1. Migahid, A.M., 1989. Flora of Saudi Arabia. 3rd Edn., Riyadh University Publication, Riyadh.

  2. Srivastava, T.N., S. Rajasekharan, D.P. Badola and D.C. Shah, 1986. An index of the available medicinal plants, used in Indian system of medicine from Jammu and Kashmir State. Ancient Sci. Life, 6: 49-63.
    Direct Link

  3. Jain, S.K., 1991. Dictionary of Indian Folk Medicine and Ethnobotany. 1st Edn., Deep Publications, Lucknow, pp: 17.

  4. Kapur, S.K., 1993. Ethno-medico plants of Kangra valley (Himachal Pradesh). J. Econ. Taxon. Bot., 17: 395-408.

  5. Balasubramanian, P., 1992. Observations on the utilisation of forest plants by the tribals of point calimere wildlife sanctuary, Tamil Nadu. Nelumbo, 34: 100-111.
    Direct Link

  6. Gupta, A.K., 2004. Reviews on Indian Medicinal Plants. Vol. 1. Indian Council of Medical Research, New Delhi, pp: 445-480.

  7. Nadkarni, K.M., 1954. Indian Materia Medica. Vol. 1, Popular Book Depot., Bombay.

  8. Duke, J.A., M.J. Bogenschutz-Godwin, J. Du Celliar and P.A.K. Duke, 2002. Handbook of Medicinal Herbs. 2nd Edn., CRC Press, Boca Raton, pp: 7.

  9. Farag, M., A. El Gamal, A. Kalil, A. Al-Rehaily, O. El Mirghany and K. El Tahir, 2013. Evaluation of some biological activities of Albizia lebbeck flowers. Pharmacol. Pharm., 4: 473-477.
    CrossRefDirect Link

  10. Mudaliar, K.S.M., 1936. Siddha Materia Medica. Department of Indian Medicine and Homeopathy, Chennai, pp: 799-800.

  11. Kang, J., C.H. Huo, Z. Li and Z.P. Li, 2007. New ceramides from the flower of Albizia julibrissin. Chin. Chem. Lett., 18: 181-184.
    CrossRefDirect Link

  12. Baruach, C.C., P.P. Gupta, G.K. Patnaik, D.K. Kul-Shreshtha and B.N. Dhawan, 1997. Anti-anaphylactic and mast cell stabilizing activity of Albizzia lebbeck. Indian J. Vet. Med., 21: 127-132.

  13. Babu, N.P., P. Pandikumar and S. Ignacimuthu, 2009. Anti-inflammatory activity of Albizia lebbeck Benth., an ethnomedicinal plant, in acute and chronic animal models of inflammation. J. Ethnopharmacol., 125: 356-360.
    CrossRefPubMedDirect Link

  14. Sanjay, K., 2003. Saponins of Albizia lebbek in Alzheimer's and Parkinson's disease. Indian J. Natl. Prod., 19: 42-48.

  15. Kasture, V.S., S.B. Kasture and S.C. Pal, 1996. Anticonvulsant activity of Albizzia lebbeck leaves. Indian J. Exp. Biol., 34: 78-80.
    PubMedDirect Link

  16. Chintawar, S.D., R.S. Somani, V.S. Kasture and S.B. Kasture, 2002. Nootropic activity of Albizzia lebbeck in mice. J. Ethnopharmacol., 81: 299-305.
    CrossRefPubMedDirect Link

  17. Resmi, C.R., M.R. Venukumar and M.S. Latha, 2006. Antioxidant activity of Albizzia lebbeck (Linn.) Benth. in alloxan diabetic rats. Indian J. Physiol. Pharmacol., 50: 297-302.
    Direct Link

  18. Singh, Y.N., H. Bisht and D. Panday, 1991. Effect of dry seed extract of a medicinal plant Albizzia lebbeck on testicular and epididymal protein profiles of rat. Himalayan J. Environ. Zool., 5: 94-108.

  19. Besra, S.E., A. Gomes, L. Chaudhury, J.R. Vedasiromoni and D.K. Ganguly, 2002. Antidiarrhoeal activity of seed extract of Albizzia lebbeck Benth. Phytother. Res.: Int. J. Devoted Pharmacol. Toxicol. Eval. Natl. Prod. Derivat., 16: 529-533.
    CrossRefDirect Link

  20. Tripathi, S.N. and P. Shukla, 1979. Effect of histamine & Albizzia lebbek Benth. on guineapig adrenal glands. Indian J. Exp. Biol., 17: 915-917.
    Direct Link

  21. Tripathi, R.M., M. Biswas and P.K. Das, 1977. General pharmacological studies of Albizzia lebbek. J. Res. Indian Med. Yoga Homoeopathy, 12: 37-41.

  22. Das, A.K., F. Ahmed, S.C. Bachar, J. Kundu and S. Dev, 2003. Anti-inflammatory effect of Albizzia lebbeck (Benth.) bark. J. Biol. Sci., 3: 685-687.
    CrossRefDirect Link

  23. Pramanik, K.C., P. Bhattacharya, T.K. Chatterjee and S.C. Mandal, 2005. Anti-inflammatory activity of methanol extract of Albizzia lebbeck (Mimosaceae) bark. Eur. Bull. Drug. Res., 13: 71-75.

  24. Kumar, D., G.K. Dash and N.K. Tripathy, 2013. Hypoglycaemic activity of bark extracts of Albizia lebbeck Benth. in streptozotocin induced diabetic rats. Int. J. Pharm. Sci. Rev. Res., 18: 28-32.
    Direct Link

  25. Syiem, D., P.Z. Khup and A.B. Syiem, 2008. Evaluation of anti-diabetic potential of Albizzia lebbek bark in normal and alloxan-induced diabetic mice. Pharmacologyonline, 3: 563-573.

  26. Kumar, M. and J.S. Dangi, 2012. Antidiabetic activity of aqueous extract of Albizia lebbeck flower in alloxan-induced diabetic rats. Int. J. Curr. Trends Sci. Tech., 3: 90-94.

  27. NRC., 1996. Guide for the Care and Use of Laboratory Animals. National Academy Press, Washington, DC., ISBN-13: 9780309053778, pp: 1-7.

  28. Borrelli, F., N. Borbone, R. Capasso, D. Montesano and A.A. Izzo et al., 2004. New sesquiterpenes with intestinal relaxant effect from Celastrus paniculatus. Planta Medica, 70: 652-656.
    CrossRefDirect Link

  29. Mehmood, M.H., S. Munir, U.A. Khalid, M. Asrar and A.H. Gilani, 2015. Antidiarrhoeal, antisecretory and antispasmodic activities of Matricaria chamomilla are mediated predominantly through K+-channels activation. BMC Complement. Altern. Med., Vol. 15.
    CrossRefDirect Link

  30. Janbaz, K.H., W. Hassan, M.H. Mehmood and A.H. Gilani, 2015. Antidiarrheal, antispasmodic and bronchodilator activities of Pistacia integerrima are mediated through dual inhibition of muscarinic receptors and Ca++ influx. Sci. Technol. Dev., 34: 52-59.
    CrossRefDirect Link

  31. Gilani, A.H., N. Rehman, M.H. Mehmood and K.M. Alkharfy, 2013. Species differences in the antidiarrheal and antispasmodic activities of Lepidium sativum and insight into underlying mechanisms. Phytother. Res., 27: 1086-1094.
    CrossRefPubMedDirect Link

  32. Mandukhail, S.R., A.F. Ahmed, H.M. Al-Yousef, J.H. Al-Qahtani and A.H. Gilani, 2014. The mechanism underlying the spasmolytic and bronchodilatory activities of the flavonoid-rich red onion Allium cepa L. peel extract. Int. J. Pharmacol., 10: 82-89.
    CrossRefDirect Link

  33. Bashir, S., K.H. Janbaz, Q. Jabeen and A.H. Gilani, 2006. Studies on spasmogenic and spasmolytic activities of Calendula officinalis flowers. Phytother. Res., 20: 906-910.
    CrossRefPubMedDirect Link

  34. Franck, H., A. Puschmann, V. Schusdziarra and H.D. Allescher, 1994. Functional evidence for a glibenclamide-sensitive K+ channel in rat ileal smooth muscle. Eur. J. Pharmacol., 271: 379-386.
    CrossRefDirect Link

  35. Satake, N., M. Shibata and S. Shibata, 1996. The inhibitory effects of iberiotoxin and 4-aminopyridine on the relaxation induced by β1-and β2-adrenoceptor activation in rat aortic rings. Br. J. Pharmacol., 119: 505-510.
    CrossRefDirect Link

  36. Cook, N.S., 1989. Effect of some potassium channel blockers on contractile responses of the rabbit aorta. J. Cardiovasc. Pharmacol., 13: 299-306.
    Direct Link

  37. Lorenz, K.L. and J.N. Wells, 1983. Potentiation of the effects of sodium nitroprusside and of isoproterenol by selective phosphodiesterase inhibitors. Mol. Pharmacol., 23: 424-430.
    Direct Link

  38. Gilani, A.H., A. Khan, F. Subhan and M. Khan, 2005. Antispasmodic and bronchodilator activities of St John's wort are putatively mediated through dual inhibition of calcium influx and phosphodiesterase. Fundam. Clin. Pharmacol., 19: 695-705.
    CrossRefPubMedDirect Link

  39. Khan, A., Najeeb-ur-Rehman, A.M. Al-Taweel, S. Perveen, G.A. Fawzy and A.H. Gilani, 2012. Studies on prokinetic, laxative, antidiarrheal and gut modulatory activities of the aqueous-methanol extract of Celtis Africana and underlying mechanisms. Int. J. Pharmacol., 8: 701-707.
    CrossRefDirect Link

  40. Reynolds, I.J., R.J. Gould and S.H. Snyder, 1984. Loperamide: Blockade of calcium channels as a mechanism for antidiarrheal effects. J. Pharmacol. Exp. Ther., 231: 628-632.
    PubMedDirect Link

  41. Undem, B.J., 2001. Pharmacotherapy of Asthma. In: Goodman and Gillman's The Pharmacological Basis of Therapeutics, Brunton, L.L., J.S. Lazo and K.L. Parker (Eds.). 11th Edn., McGraw-Hill, New York, USA., pp: 717-736.

  42. Iwao, I. and Y. Terada, 1962. On the mechanism of diarrhea due to castor oil. Jpn. J. Pharmacol., 12: 137-145.
    CrossRefPubMedDirect Link

  43. Chitme, H.R., M. Chanda and S. Kaushrik, 2004. Studies on anti-diarrhoeal activity of Calotropis gigantea R. Br. in experimental animals. J. Pharm. Pharm. Sci., 7: 70-75.
    PubMedDirect Link

  44. Khan, A., Najeeb-ur-Rehman, K.M. AlKharfy and A.H. Gilani, 2011. Antidiarrheal and antispasmodic activities of Salvia officinalis are mediated through activation of K+ channels. Bangladesh J. Pharmacol., 6: 111-116.
    CrossRefDirect Link

  45. Rehman, N.U., K. Aslam, F. Urooj, A. Mahrukh and A.M. Nawal et al., 2013. Presence of laxative and antidiarrheal activities in Periploca aphylla: A Saudi medicinal plant. Int. J. Pharmacol., 9: 190-196.
    Direct Link

  46. Shah, A.J. and A.H. Gilani, 2012. The calcium channel blocking and phosphodiesterase inhibitory activities of the extract of Andropogon muricatus explains its medicinal use in airways disorders. Phytother. Res., 26: 1256-1258.
    CrossRefPubMedDirect Link

  47. Kaneda, T., Y. Takeuchi, H. Matsui, K. Shimizu, N. Urakawa and S. Nakajyo, 2005. Inhibitory mechanism of papaverine on carbachol-induced contraction in bovine trachea. J. Pharmacol. Sci., 98: 275-282.
    CrossRefDirect Link

  48. Tachado, S.D., R.A. Akhtar, C.J. Zhou and A.A. Abdel-Latif, 1992. Effects of isoproterenol and forskolin on carbachol-and fluoroaluminate-induced polyphosphoinositide hydrolysis, inositol triphosphate production and contraction in bovine iris sphincter smooth muscle: Interaction between cAMP and IP3 second messenger systems. Cell. Signall., 4: 61-75.
    CrossRefDirect Link

  49. Barnes, P.J., 2006. Drugs for asthma. Br. J. Pharmacol., 147: S297-S303.
    CrossRefDirect Link

  50. Hsu, Y.T., G. Liao, X. Bi, T. Oka, S. Tamura and M. Baudry, 2011. The PDE10A inhibitor, papaverine, differentially activates ERK in male and female rat striatal slices. Neuropharmacology, 61: 1275-1281.
    CrossRefDirect Link

Related Articles

Anti-inflammatory Effect of Albizzia lebbeck (Benth.) Bark
Antidiarrheal, Antispasmodic and Bronchodilator Activities of Pistacia integerrima are Mediated through Dual Inhibition of Muscarinic Receptors and Ca++ Influx
Studies on Prokinetic, Laxative, Antidiarrheal and Gut Modulatory Activities of the Aqueous-methanol Extract of Celtis africana and Underlying Mechanisms
The Mechanism Underlying the Spasmolytic and Bronchodilatory Activities of the Flavonoid-rich Red Onion “Allium cepa L.” Peel Extract

Leave a Comment


Your email address will not be published. Required fields are marked *

Useful Links

  • Journals
  • For Authors
  • For Referees
  • For Librarian
  • For Socities

Contact Us

Office Number 1128,
Tamani Arts Building,
Business Bay,
Deira, Dubai, UAE

Phone: +971 507 888 742
Email: [email protected]

About Science Alert

Science Alert is a technology platform and service provider for scholarly publishers, helping them to publish and distribute their content online. We provide a range of services, including hosting, design, and digital marketing, as well as analytics and other tools to help publishers understand their audience and optimize their content. Science Alert works with a wide variety of publishers, including academic societies, universities, and commercial publishers.

Follow Us
© Copyright Science Alert. All Rights Reserved