• [email protected]
  • +971 507 888 742
Submit Manuscript
SciAlert
  • Home
  • Journals
  • Information
    • For Authors
    • For Referees
    • For Librarian
    • For Societies
  • Contact
  1. Current Research in Chemistry
  2. Vol 3 (1), 2011
  3. 1-15
  • Online First
  • Current Issue
  • Previous Issues
  • More Information
    Aims and Scope Editorial Board Guide to Authors Article Processing Charges
    Submit a Manuscript

Current Research in Chemistry

Year: 2011 | Volume: 3 | Issue: 1 | Page No.: 1-15
DOI: 10.3923/crc.2011.1.15
crossmark

Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
Review Article

Chemical Constituents and Biological Importance of Swertia: A Review

Jagmohan S. Negi, Pramod Singh and Bipin Rawat

ABSTRACT


Swertia, commonly known as ‘Chirata’ in indigenous systems of medicine, are used for treatment of a variety of ailments. Literature survey revealed that much phytochemical analysis has been done on genus Swertia by several groups. In this study, we had planned to document the active chemical constituents of valuable medicinal plants of genus Swertia. The major bioactives of Swertia are xanthones, however, other secondary metabolites such as flavonoids, iridoid glycosides and triterpenoids are also active constituents of this genus. These secondary metabolites played significant role in biological activities such as hepatoprotective, antihepatotoxic, antimicrobial, anti-inflammatory, anticarcinogenic, antileprosy, hypoglycemic, antimalarial, antioxidant, anticholinergic, CNS depressant and mutagenicity.
PDF Abstract XML References Citation
Received: October 22, 2010;   Accepted: February 19, 2011;   Published: April 22, 2011

How to cite this article

Jagmohan S. Negi, Pramod Singh and Bipin Rawat, 2011. Chemical Constituents and Biological Importance of Swertia: A Review. Current Research in Chemistry, 3: 1-15.

DOI: 10.3923/crc.2011.1.15

URL: https://scialert.net/abstract/?doi=crc.2011.1.15

INTRODUCTION


Swertia (family Gentianaceae) is a large genus of herbs distributed in the mountainous regions of tropical area at an altitude of 1200-3600 m. The herbal drug “chiretta” obtained from the dried plants of swertia species. The whole plants of Swertia are medicinal but roots are the most powerful parts (Anonymous, 1976). These are useful as a tonic without aroma or astringency. In Indian medical system chiretta is used as remedy for bronchial asthma, liver disorders, chronic fever, anemia, stomachic and diarrhoea. Chiretta is also used in dying cotton cloth and in liquor industry as bitter ingredients. In Ayurveda, S. chirayita is used as antipyretic, anthelminitic, antiperiodic, laxative and in asthma and leucorrhoea. In Yunani system the plant is used as astringent, tonic, stomachic, lessens inflammation, sedative to pregnant uterus and chronic fevers (Kirtikar and Basu, 1984).

S. chirayita has an established domestic (India) and international market which is increasing at a rate of 10% annually. In spite of the increasing demand by herbal industry the plant is still collected from wild. It is sparsely cultivated and negligible efforts have gone into developing proper agro-techniques of plant. It is harvested for the drug industry (Bentley and Trimen, 1880). S. chirayita is also used in British and American pharmacopoeias as tincture and infusions (Joshi and Dhawan, 2005). S. angustifolia resembles to S. chirayita very closely but differs from it in having thinner root, small wings and ridges on the stem. The dried plants of S. angustifolia and S. paniculata are used as substitute for S. chirayita. About 22,000 kg of the drug are said to be collected and sold annually in Himanchal Pradesh while the annual demand for chiretta in India is reported to be 37,300 kg. Plants belonging to these families are found in all parts of world. They have been widely used in folk medicine. Simple polyoxygenated xanthones have been isolated from most of them. Xanthone derivatives, flavonoids, iridoid glycosides, triterpenoids and dimeric xanthones have been isolated from the genus Swertia (Tan et al., 1991; Zhou et al., 1989). The genus Swertia exhibit variety of biological activity such as hepatoprotective, antihepatotoxic, antimicrobial, anti-inflammatory, anticarcinogenic, antileprosy, hypoglycemic, antimalarial, antioxidant, anticholinergic, CNS depressant and mutagenicity. The pharmacological properties of Swertia have raised great interest. The purpose of this review to collect all the possible information regarding the chemical constituents and biological effects of the genus Swertia, thus will help to the researchers and scientists to take action for future study in this discipline.

CHEMICAL CONSTITUENTS

Xanthones are main secondary metabolites of Swertia species. Structures of xanthones are related to that of flavonoids and their chromatographic behaviors are also similar. Although flavonoids are frequently encountered in nature, xanthones have been found in limited number of families. They always occur in Gentianaceae and Guttiferae. Xanthones are sometimes found as the parent polyhydroxylated compounds but most xanthones are mono or poly methyl ethers or are found as glycosides (Hostettmann and Miura, 1977). Unlike iridoids, xanthones are apparently not present in all plant species investigated in the family Gentianaceae. This is documented by the systematic study of Hostettmann-Kaldas et al. (1981). The natural xanthones have been isolated mainly from about 150 plants associated with four families; Guttiferae, Gentianaceae, Moraceae and Polygalaceae. According to Vieira and Kijjoa (2005), 278 natural xanthones were reported from total of 515 xanthones. In this period, the xanthones from higher plants appear to be associated mainly with the families Clusiaceae (55 species in 12 genera) and Gentianaceae (28 species in 8 genera). Isolated compounds and biological activities of Swertia species are listed in Table 1. Xanthones isolated from nature are classified into six main groups; simple xanthones, xanthone glycosides, prenylated xanthones, xanthonolignoids, bis-xanthones and miscellaneous xanthones. These are further subdivided according to the degree of oxygenation into non-, mon-o, di-, tri-, tetra-, penta- and hexa-oxygenated substances (Mandal et al., 1992b; Sultanbawa, 1980; Demirkiran, 2007).

Xanthones and their glycosides (Fig. 1) have been isolated from Swertia species. Mangiferin is the most common C-glycosides in S. chirayita, S. mussotii, S. cordata, S. macrosperma and S. connata. Xanthone O-glycosides (swertianolin) from S. japonica and S. ciliata (Plouvier et al., 1967) have been reported. The first xanthone O-glycoside, norswertianin-1-O-glucosyl-3-O-glucoside has been isolated from S. perennis (Hostettmann and Wagner, 1977). The isolated chemical constituents, ethno-pharmacology as well as the biological activities and pharmacological applications of Swertia species, covering the literature up to 2003 are compiled by Brahmachari et al. (2004). Xanthones in Swertia chirata, S. speciosa and S. paniculata were determined by HPLC (Negi et al., 2009a, 2010a, b). Mineral elements, based on their concentration can play different roles in human health and plant life. Nine elements (Zn, Cu, Mn, Fe, Co Na, K, Ca and Li) in S. chirayita and S. speciosa have been analyzed by atomic absorption spectrometry (Negi et al., 2009b, 2010c). Kaempferol, catechin, epicatechin and Polyphenol Contents were also isolated and identified from Swietenia macrophylla, Rhus coriaria and Rhus typhina (Falah et al., 2008; Kossah et al., 2010). Extracts of G. senegalensis are rich in flavonoid content and showed anti-inflammatory activity (Sombie et al., 2011). Leaf and stem of Swertia chirata showed significant antimicrobial activities against some Gram-positive and Gram-negative bacteria (Alam et al., 2009).

Table 1: Isolated compounds and activity of different parts of Swertia species
Image for - Chemical Constituents and Biological Importance of Swertia: A Review
Image for - Chemical Constituents and Biological Importance of Swertia: A Review
Image for - Chemical Constituents and Biological Importance of Swertia: A Review
Image for - Chemical Constituents and Biological Importance of Swertia: A Review
Image for - Chemical Constituents and Biological Importance of Swertia: A Review

Several isolated chemical constituents viz, coumarins, flavonoids, phytosterol, phenols, tenins, alkaloids, triterpenes, anthraquinons and biological activities of Toona species were documented by Negi et al. (2011).

Image for - Chemical Constituents and Biological Importance of Swertia: A Review
Fig. 1: Structures of some isolated xanthones from Swertia

BIOLOGICAL PROPERTIES

Plants belonging to the family Gentianaceae, are best known for their bitter taste and used in traditional remedies against loss of appetite, fever and are still included in many “tonic” formulations (Gaur, 1999). Some specific activities have been reported for xanthones and iridoids from Gentianaceae. Iridoids such as swertiamarin have anticholinergic propertiy (Bhattacharya et al., 1974). For sweroside and gentiopicroside hepatoprotective activities have been reported (Kondo et al., 1994) and both compounds are being used as antihepatitis drugs. Xanthones (especially mangiferin) are reported to give CNS stimulation (Bhattacharya et al., 1972). They should also have anti-inflammatory activity (Mandal et al., 1992a). For bellidifolin and swerchirin a strong hypoglycemic activity has been reported by Saxena et al. (1993) and Basnet et al. (1994). S. paniculata is used in the Indian System of Medicine as a bitter tonic and in the treatment of some mental disorders (Prakash et al., 1982). S. hookeri extract is used in the treatment of microbial infections and as a mood elevator (Ghosal et al., 1980). Swertifrancheside isolated from S. franchetiana was found to be potent inhibitor of the DNA polymerase activity of human immunodeficiency virus-1 reverse transcriptase (HIV-1RT). Naturally occurring xanthones have emerged out as an important class of organic compounds in view of their remarkable pharmacological and other biological activities. It has now been observed that a number of plant products which are in regular use as chemotherapeutic agents contain xanthones as active constituents. Mangiferin was the first xanthone to be investigated pharmacologically and has been found to exhibit a broad spectrum of biological activities. It shows monoamine oxidase inhibition, cardiotonic, convulsant and choleretic activities (Ghosal et al., 1973; Bhattacharya et al., 1972). Pronounced anti-inflammatory activity has also been observed in mangiferin. Oral and topical compounds containing mangiferin are useful for the treatment of diseases caused by herpes virus. Mangiferin has been found to protect the liver of the rats from high altitude hypoxia. On the other hand Ghosal et al. (1975) have observed the opposite CNS depressant effect for xanthone-O-glycosides in mice and rats. The extract of most of Swertia species showed mutagenic activities. The antimalarial drug AYUSH-64 contains S. chirayita as one of the ingredients. Xanthones of S. chirayita are reported to produce CNS depression (Ghosal et al., 1973). The total extract of S. chirayita showed significant antifeedant activity against Jute semilooper (Malic et al., 1985). Norswertianolin, an O-glycoside has been reported to produce antitubercular activity. The O-glycosides of S. purpurescens are known to produce CNS depression in albino rate and mice (Ghosal et al., 1974). 1,8-Dihydroxy-3,5-dimethoxyxanthone (swerchirin), isolated from the hexane fraction of Swertia chirayita, has a very significant blood sugar lowering effect in fasted, fed, glucose loaded and tolbutamide pre-treated albino rats.

CONCLUSION


As a conclusion, the present study has shown that mainly xanthones from genus Swertia are responsible for several types of biological activities. Apart from these flavonoids, iridoid glycosides and triterpenoids are also secondary metabolites isolated from this genus which also contribute their role in biological activities.

ACKNOWLEDGMENT


The authors are thankful to Dr. Asha Budakoti, NCL, Pune for providing some references.

REFERENCES


  1. Alam, K.D., M.S. Ali, S. Mahjabeen, S. Parvin, M.A. Akbar and R. Ahamed, 2010. Report: Analgesic activities of ethanol extract of leaf, stem and their different fractions of Swertia chirata. Pak. J. Pharm. Sci., 23: 455-457.
    PubMed

  2. Alam, K.D., M.S. Ali, S. Parvin, S. Mahjabeen, M.A. Akbar and R. Ahamed, 2009. In vitro antimicrobial activities of different fractions of Swertia chirata ethanolic extract. Pak. J. Biol. Sci., 12: 1334-1337.
    CrossRefDirect Link

  3. Anonymous, 1976. The Wealth of India. CSIR, New Delhi, pp: 79-80.

  4. Ashida, S., S.F. Noguchi and T. Suzuki, 1994. Antioxidative components, xanthone derivatives, in Swertia japonica Makino. J. Am. Oil Chem. Soc., 71: 1095-1099.
    Direct Link

  5. Asthana, J.G., S. Jain, A. Mishra and M.S. Vijaykanth, 2001. Evaluation of antileprotic herbal drug combinations and their combination with Dapsone. Indian Drugs, 38: 82-86.

  6. Atta-ur-Rahman, A. Pervin, M. Feroz, M.I. Choudhary and M.M. Qureshi et al., 1994. Phytochemical studies on Swertia cordata. J. Nat. Prod., 57: 134-137.
    CrossRef

  7. Awasthi, A.K., G.S. Bisht and B. Anroop, 2005. In vitro antimirobial activity of Swertia cordata. Ind. J. Nat. Prod., 21: 27-29.

  8. Bajpai, M.B., R.K. Asthana, N.K. Sharma, S.K. Chaterjee and S.K. Mukherjee, 1991. Hypoglycemic effect of swerchirin from the hexane fraction of Swertia chirayita. Planta Med., 57: 102-104.
    CrossRef

  9. Balasundari, P., R. Parimala, Abhaydharmsi, S.K. Singh, and V. Ravichandran, 2006. Hepatoprotective activity of Swertia chirata . Hamd. Med., 49: 53-56.

  10. Banerjee, S., T.K. Sur, S. Mandal, P.C. Das and S. Sikdar, 2000. Assessment of the anti-inflammatory effects of Swertia chirata in acute and chronic experimental models in male albino rats. Ind. J. Pharmacol., 32: 21-24.
    Direct Link

  11. Basnet, P., S. Kadota, T. Namba and M. Shimizu, 1994. The hypoglycaemic activity of Swertia japonica extract in streptozotocin induced hyperglycaemic rats. Phytother. Res., 8: 55-57.
    CrossRefDirect Link

  12. Bentley, R. and H. Trimen, 1880. Medicinal Plant. J and A Churchill, London, pp: 183.

  13. Bhana, S., R. Kumar, A.K. Kalla and K.L. Dhar, 1988. Triterpenoids from Swertia petiolata. Phytochem., 27: 539-542.
    CrossRef

  14. Bhattacharya, S.K., S. Ghosal, R.K. Chaudhuri and A.K. Sanyal, 1972. Canscora decussata (Gentianaceae) xanthones III: Pharmacological studies. J. Pharm. Sci., 61: 1838-1840.
    PubMed

  15. Bhattacharya, S.K., P.K.S.P. Reddy, S. Ghosal, A.K. Singh and P.V. Sharma, 1974. Chemical constituents of Gentianaceae, XIX, CNS depressant effects of swertiamarin. J. Pharm. Sci., 65: 1547-1549.
    CrossRef

  16. Brahmachari, G., S. Mondal, A. Gangopadhyay, D. Gorai, B. Mukhopadhyay, S. Saha and A.K. Brahmachari, 2004. Swertia (Gentianaceae): Chemical and pharmacological aspects. Chem. Biodivers., 1: 1627-1651.
    CrossRefPubMedDirect Link

  17. Chakravarti, A.K., T. Sarkar and B. Das, 2001. Structure and synthesis of glycoborine, a new carbazole alkaroid from roots of Glycosmis arborea. Ind. J. Chem., 40: 228-231.

  18. Chakravarty, A.K., S. Mukhopadhyay, S.K. Moitra and B, Das, 1994. (-)-Syringaresinol, a hepatoprotective agent and other constituents from Swertia chirata. Ind. J. Chem., 33: 405-408.
    Direct Link

  19. Chandrasekar, B., M.B. Bajpai and S.K. Mukherjee, 1990. Hypoglycemic activity of Swertia chirayita (Roxb ex Flem) Karst. Ind. J. Exp. Biol., 28: 616-628.
    PubMedDirect Link

  20. Chintalwar, G.J. and S. Chattopadhyay, 2006. Structural confirmation of decussatin, a Swertia decussata xanthone. Nat. Prod. Res., 20: 53-56.
    PubMed

  21. Jiang, D.J., J.L. Jiang, H.Q. Zhu, G.S. Tan, S.Q. Liu, K.P. Xu and Y.J. Li, 2004. Demethylbellidifolin preserves endothelial function by reduction of the endogenous nitric oxide synthase inhibitor level. J. Ethnopharmacol., 93: 295-306.
    CrossRef

  22. Denisova, O.A., V.I. Glyzin, A.V. Patudin and D.A. Fesenko, 1980. Xanthones from the roots of Swertia iberica. Chem. Nat. Compounds, 16: 145-149.
    CrossRef

  23. Du, X.G., W. Wang, S.P. Zhang, X.P. Pu and Q.Y. Zhang et al., 2010. Neuroprotective xanthone glycosides from Swertia punicea. J. Nat. Prod., 73: 1422-1426.
    CrossRef

  24. El-Sedawy, A., Y.Z. Shu, M. Hattori, K. Kobashi and T. Namba, 1989. Metabolism of Swertiamarin from Swertia japonica by human intestinal bacteria. Plant. Med., 55: 147-151.
    CrossRef

  25. Fukamiya, N., M. Okano, K. Kondo and K. Tagahara, 1990. Xanthones from Swertia punicea. J. Nat. Prod., 53: 1543-1547.
    CrossRef

  26. Gaur, R.D., 1999. Flora of the District Garhwal North West Himalaya: With Ethnobotanical Notes. TransMedia Publication, Srinagar Garhwal, India, Pages: 811.

  27. Geng, C.A., Z.Y. Jiang, Y.B. Ma, J. Luo and X.M. Zhang et al., 2009. Swerilactones A and B, anti-HBV new lactones from a tradtional Chinese herb: Swertia mileensis as a treatment for viral hepatitis. Org. Lett., 11: 4120-4123.
    PubMed

  28. Geng, C.A., X.M. Zhang, Y.B. Ma, Z.Y. Jiang, J.F. Liu, J. Zhou and J.J. Chen, 2010. Three new secoiridoid glycoside dimers from Swertia mileensis. J. Asian Nat. Prod. Res., 2: 542-548.
    PubMed

  29. Ghosal, S., K. Biswas and D.K. Jaiswal, 1980. Xanthone and flavonol constituents of Swertia hookeri. Phytochem., 19: 123-126.
    CrossRefDirect Link

  30. Ghosal, S., V.P. Sharma and R.K. Chaudhuri, 1974. Chemical constituents of gentianaceae. X. Xanthone-O-glucosides of Swertia purpurascens Wall. J. Pharm. Sci., 63: 1286-1290.
    PubMed

  31. Ghosal, S., P.V. Sharma, R.K. Chaudhuri and S.K. Bhattacharya, 1973. Chemical constituents of the gentianaceae V: Tetraoxygenated xanthones of Swertia chirata buch.-ham. J. Pharm. Sci., 62: 926-930.
    CrossRef

  32. Ghosal, S., P.V. Sharma, R.K. Chaudhuri and S.K. Bhattacharya, 1975. Chemical constituents of gentianaceae XIV: Tetraoxygenated and pentaoxygenated xanthones of Swertia purpurascens Wall. J. Pharm. Sci., 64: 80-83.
    PubMed

  33. Hajimehdipour, H., Y. Amanzadeh, S.E. Sadat-Ebrahimi and V. Mozaffarian, 2003. Three tetraoxygenated xanthones from Swertia longifolia. Pharm. Biol., 41: 497-499.
    Direct Link

  34. Hajimehdipoor, H., M.G. Dijoux-Franca, A.M. Mariotte, Y. Amanzadeh, S.E. Sadat-Ebrahimi and M. Ghazi-Khansari, 2006. Two new xanthone diglycosides from Swertia longifolia Boiss. Nat. Prod. Res., 20: 1251-1257.
    PubMed

  35. Hase, K., J. Li, P. Basnet, Q. Xiong, S. Takamura, T. Namba and S. Kadota, 1997. Hepatoprotective principles of Swertia japonica Makino on d-galactosamine/lipopolysaccharide-induced liver injury in mice. Chem. Pharm. Bull., 45: 1823-1827.
    PubMed

  36. Hikino, H., Y. Kiso, M. Kubota and M. Hattori, 1984. Antihepatotoxic principles of Swertia japonica herbs. Shoyakugaku Zasshi, 38: 359-360.

  37. Hostettmann, K. and I. Miura, 1977. A new xanthone diglucoside from Swertia perennis L. Helvetica Chimica Acta, 60: 262-264.
    CrossRefDirect Link

  38. Hostettmann, K. and H. Wagner, 1977. Xanthone glycosides. Phytochemistry, 16: 821-829.
    CrossRefDirect Link

  39. Hostettmann-Kaldas, M., K. Hostettmann and O. Sticher, 1981. Xanthones, flavones and secoiridoids of american Gentiana species. Phytochemistry, 20: 443-446.
    CrossRefDirect Link

  40. Ikeshiro, Y., T. Kubota and Y. Tomita, 1983. Two bitter biphenyl glucosides from Swertia japonica. Plant. Med., 47: 26-29.
    CrossRef

  41. Ikeshiro, Y. and Y. Tomita, 1984. A new iridoid glucoside of Swertia japonica. Planta Med., 50: 485-488.
    Direct Link

  42. Ikeshiro, Y. and Y. Tomita, 1985. Iridoid glucoside of Swertia japonica. Planta Med., 5: 390-393.
    Direct Link

  43. Ikeshiro, Y. and Y. Tomita, 1987. Senburiside II, a new iridoid glucoside from Swertia japonica. Planta Med., 53: 158-161.
    Direct Link

  44. Iqbal, Z., M. Lateef, M.N. Khan, A. Jabbar and M.S. Akhtar, 2006. Anthelmintic activity of Swertia chirata against gastrointestinal nematodes of sheep. Fitoterapia, 77: 463-465.
    CrossRefDirect Link

  45. Ishimaru, K., H. Sudo, M. Satake, Y. Matsunaga, Y. Hasegawa, S. Takemoto and K. Shimomura, 1990. Amarogentin, amaroswerin and four xanthones from hairy root cultures of Swertia japonica. Phytochem., 29: 1563-1565.
    CrossRef

  46. Ishimaru, K., H, Sudo, M. Satake and K. Shimomurat, 1990. Phenyl glucosides from a hairy root culture of Swertia japonica. Phytochem., 29: 3823-3825.
    CrossRef

  47. Joshi, P. and V. Dhawan, 2005. Swertia chirayita- an overview. Curr. Sci., 89: 635-640.

  48. Kanamori, H., I. Sakamato and M. Mizuta, 1984. Studies on the mutagenicity of Swertia herba. III: Components which become mutagenic on nitrite treatment. Chem. Pharm. Bull., 32: 2290-2295.
    Direct Link

  49. Kanamori, H., I., Sakamato and M. Mizuta, 1986. Studies on the mutagenicity of Swertia Herba. III: Components which become mutagenic on nitrite treatment. Chem. Pharm. Bull., 34: 1663-1666.

  50. Karan, M., K. Vasisht and S.S. Handa, 1999. Antihepatotoxic activity of Swertia chirata on carbon tetrachloride induced hepatotoxicity in rats. Phytother. Res., 13: 24-30.
    PubMed

  51. Karan, M., K. Vasisht and S.S. Handa, 1999. Antihepatotoxic activity of Swertia chirata on paracetamol and galactosamine induced hepatotoxicity in rats. Phytother. Res., 13: 95-101.
    PubMed

  52. Khan, M.I. and M.H. Haqqani, 1981. Chemical investigation of Swertia cordata. Fitoterapia, 52: 165-166.
    Direct Link

  53. Khan, T.A., M.H. Haqqani and N.M. Nisar, 1979. Chemical investigation of Swertia alata. Planta Med., 37: 180-181.
    Direct Link

  54. Khetwal, K.S. and R.S. Bisht, 1988. A xanthone glycoside from Swertia speciosa. Phytochem., 27: 1910-1911.
    CrossRef

  55. Khetwal, K.S., B. Joshi and R.S. Bisht, 1990. Tri- and tetraoxygenated xanthones from Swertia petiolata. Phytochem., 29: 1265-1267.
    CrossRef

  56. Khetwal, S., S. Pande and U. Tiwari, 1997. Xanthones from Swertia alata. Ind. J. Pharm. Sci., 59: 190-191.
    Direct Link

  57. Kikuchi, M. and M. Kikuchi, 2004. Studies on the constituents of Swertia japonica Makino I. On the structures of new secoiridoid diglycosides. Chem. Pharm. Bull., 52: 1210-1214.
    CrossRefDirect Link

  58. Kikuchi, M. and M. Kikuchi, 2005. Studies on the constituents of Swertia japonica Makino II. on the structures of new glycosides. Chem. Pharm. Bull., 53: 48-51.
    CrossRefDirect Link

  59. Kikuzaki, H., Y. Kawasaki, S. Kitamura and N. Nakatani, 1996. Secoiridoid glucosides from Swertia mileensis. Planta Med., 62: 35-38.
    CrossRef

  60. Kirtikar, K.R. and B.D. Basu, 1984. Indian Medicinal Plants. Vol. 3, Latit Mohan Basu, Leader Road, Allahabad, India, pp: 1664-1665.

  61. Kondo, Y., F. Takano and H. Hojo, 1994. Suppression of chemically and immunologically induced hepatic injuries by gentiopicroside in mice. Planta Med., 60: 414-416.
    PubMed

  62. Kulanthaivel, P. and S.W. Pelletier, 1988. Isolation of a new xanthone and 2-hydroxydimethylterephthalate from Swertia petiolata. J. Nat. Prod., 51: 379-381.
    Direct Link

  63. Li, J.C., L. Feng, B.H. Sun, T. Ikeda and T. Nohara, 2005. Hepatoprotective activity of the constituents in Swertia pseudochinensis. Biol. Pharm. Bull., 28: 534-537.
    PubMedDirect Link

  64. Luo, Y.H. and R.L. Nie, 1992. Studies on iridoid glycosides from Swertia angustifolia. Yao Xue Xue Bao, 27: 125-129.
    PubMed

  65. Malic, R.N., P.C. Das and S.M. Chatterji, 1985. Antifeeding properties of Swertia chirataagainst jute semilooper (Anomis sabulifera Guen). Curr. Sci., 54: 1110-1112.

  66. Mandal, S. and A. Chatterjee, 1994. Seminar on Research in Ayurveda and Siddha. CCRAS, New Delhi, pp: 58-59.

  67. Mandal, S., P.C. Das and P.C. Joshi, 1992. Anti-inflammatory action of Swertia chirata. Fitoterapia, 62: 122-128.

  68. Mandal, S., P.C. Das and P.C. Joshi, 1992. Naturally occuring xanthones from terrestrial flora. J. Ind. Chem. Soc., 69: 611-636.
    Direct Link

  69. Menkovic, N., K. Savikin-Fodulovic, V. Bulatovic, I. Aljancic and N. Juranic et al., 2002. Xanthones from Swertia punctata. Phytochemistry, 61: 415-420.
    CrossRefDirect Link

  70. Mishra, K.P. and T.G. Joseph, 1983. A note on the study of the market sample of Swertia chirata Buch. Hum. Ex. Wall. Bull. Med. Ethnobot. Res., 4: 154-157.

  71. Mukherjee, B. and S.K. Mukherjee, 1987. Blood Sugar Lowering Activity of Swertia chirata (Buch-Ham) Extract. Pharm. Biol., 25: 97-102.
    CrossRef

  72. Niu, B., J. Guo, J. Chen and J. Ma, 1991. Chemical constituents of Swertia tetraptera Maxim. Zhongguo Zhong Yao Za Zhi, 16: 549-550.
    PubMedDirect Link

  73. Demirkiran, O., 2007. Topics in Heterocyclic Chemistry. Springer Berlin/Heidelberg, New York.

  74. Patro, B.S., G.J. Chintalwar and S. Chattopadhyay, 2005. Antioxidant activities of Swertia decussata xanthones. Nat. Prod. Res., 19: 347-354.
    PubMed

  75. Tan, P., C.Y. Hou, Y.L. Liu, L.J. Lin and G.A. Cordell, 1992. 3-O-Demethylswertipunicoside from Swertia punicea. Phytochem., 31: 4313-4315.
    Direct Link

  76. Plouvier, V., J. Massicot and P. Rivaille, 1967. [On gentiacauleine, a new tetra-substituted xanthone, aglycone of gentiacauloside of Gentiana acaulis L.]. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D, 264: 1219-1222, (In French).
    PubMedDirect Link

  77. Prakash, A., P.C. Basumatary, S. Ghosal and S.S. Handa, 1982. Chemical constituents of Swertia paniculata. Planta Med., 45: 61-62.
    CrossRefPubMedDirect Link

  78. Ramesh, N., M.B. Viswanathan, A. Saraswathy, K. Balakrishna, P. Brindha and P. Lakshmanaperumalsamy, 2002. Antimicrobial and phytochemical studies of Swertia corymbosa. Fitoterapia, 73: 160-164.
    CrossRefPubMedDirect Link

  79. Rastogi, R.P. and B.N. Mehrotra, 1969. Compendium of Indian Medicinal Plants. Vol. 1, Central Drug Research Institute, Lucknow and Publications and Information Directorate, New Delhi, pp: 396.

  80. Rastogi, R.P. and B.N. Mehrotra, 1979. Compendium of Indian Medicinal Plants. Vol. 2, Central Drug Research Institute, Lucknow and Publications and Information Directorate, New Delhi, pp: 654-655.

  81. Saha, P., S. Mandal, A. Das, P.C. Das and S. Das, 2004. Evaluation of the anticarcinogenic activity of Swertia chirata Buch-Ham, an Indian medicinal plant, on DMBA-induced mouse skin carcinogenesis model. Phytother. Res., 18: 373-378.
    PubMed

  82. Sakai, T., H. Naoki, H. Kameoka and K. Takaki, 1981. Structure of semburin and isosemburin, 2, 8- dioxabicyclo[3.3.l]nonanes isolated from the volatile oil of Swertia japonica Makino. Chem. Lett., 8: 1257-1258.

  83. Sakamoto, I., T. Tanaka, O. Tanaka and T. Tsuyoshi, 1982. Xanthone glucosides of Swertia japonica Makino and a related plant: Structure of a new glucoside, isoswertianolin and structure revision of swertianolin and norswertianolin. Chem. Pharm. Bull., 30: 4088-4091.
    Direct Link

  84. Saxena, A.M., M.B. Bajpai, P.S. Murthy and S.K. Mukherjee, 1993. Mechanism of blood sugar lowering by a swerchirin-containing hexane fraction (SWI) of Swertia chirayita. Indian J. Exp. Biol., 31: 178-181.
    PubMedDirect Link

  85. Sultanbawa, M.U.S., 1980. Xanthonoids of tropical plants. Tetrahedron, 36: 1465-1506.
    CrossRef

  86. Tan, G.S., K.P. Xu, F.S. Li, P.S. Xu, G.Y. Hu, D.J. Jiang and Y.J. Li, 2003. Daviditin B from Swertia davidi Franch. Yao Xue Xue Bao, 38: 931-933.
    PubMed

  87. Tan, P., C. Hou, Y. Liu, L.J. Lin and G.A. Cordell, 1991. Swertipunicoside. The first bisxanthone C-glycoside. J. Org. Chem., 56: 7130-7133.
    CrossRef

  88. Tan, P., Y. Liu and C.Y. Hou, 1993. Swertiapunimarin from Swertia punicea Hemsl. Acta. Pharm. Sin., 28: 522-525.
    PubMed

  89. Tan, P., Y.L. Liu and C.Y. Hou, 1992. Structure of swertiapuniside from Swertia punicea Hemsl. Yao Xue Xue Bao, 27: 476-479.
    PubMed

  90. Verma, D.L. and K.S. Khetwal, 1985. Phenolics in the roots of Swertia paniculata Wall. Sci. Culture, 51: 305-306.

  91. Vieira, L.M.M. and A. Kijjoa, 2005. Naturally-occurring xanthones: Recent developments. Curr. Med. Chem., 12: 2413-2446.
    CrossRef

  92. Wang, J.N., C.Y. hou, Y.L. liu, L.Z. lin, R.R. Gil and G.A. cordell, 1994. Swertiflanchesides an HIV-reverse transcriptase inhibitor and the first flavone-xanthone dimmer from Swertia franchetiana. J. Nat. Prod., 57: 211-217.
    Direct Link

  93. Wang, S.S., X.W. Han, Q. Xu, H.B. Xiao, X.M. Liu, Y.G. Du and X.M. Liang, 2005. Xanthone glycosides from Swertia franchetiana. J. Asian Nat. Prod. Res., 7: 175-179.
    PubMed

  94. Wang, S.S., W.J. Zhao, X.W. Han and X.M. Liang, 2005. Two New iridoid glycosides from the Tibetan Folk Medicine Swertia franchetiana. Chem. Pharm. Bull., 53: 674-676.
    PubMed

  95. Xia, C.L., G.M. Liu and H. Zhang, 2008. Chemical constituents from herbs of Swertia delavayi. Zhongguo Zhong Yao Za Zhi, 33: 1988-1990.
    PubMed

  96. Ya, B.Q., L.C. Nian and C. Li, 1999. Protective effect of swerchirin on hematoiesis in 60 Co irradiated mice. Phytomed., 6: 85-88.

  97. Yamahara, J., M. Kobayashi, H. Matsuda and S. Aoki, 1991. Anticholinergic action of Swertia japonica and an active constituent. J. Ethnopharmacol., 33: 31-35.
    CrossRef

  98. Yang, H., C. Ding, Y. Duan and J. Liu, 2005. Variation of active constituents of an important Tibet folk medicine Swertia mussotii Franch. (Gentianaceae) between artificially cultivated and naturally distributed. J. Ethnopharmacol., 98: 31-35.
    CrossRef

  99. Zhang, Y., X. Xu, C. Hou and J. Yang, 1996. Chemical constituents of Swertia pubescens Franch. Zhongguo Zhong Yao Za Zhi, 21: 103-104.
    PubMed

  100. Zhou, H.M. and Y.L. Liu, 1990. Structure of swertiamacroside from Swertia macrosperma C. B. Clark. Acta. Pharm. Sin., 25: 123-126.
    PubMed

  101. Zhou, H.M., Y.L. Liu, G. Blasko and G.A. Cordell, 1989. Swertiabisxanthone-I from Swertia macrosperma. Phytochem., 28: 3569-3571.
    CrossRef

  102. Negi, J.S., P. Singh, G.J. Pant and M.S.M. Rawat, 2010. RP-HPLC analysis and antidiabetic Activity of Swertia paniculata (Wall.). Nat. Prod. Comm., 5: 907-910.
    PubMed

  103. Negi, J.S., P. Singh, M.S.M. Rawat and G.J. Nee Pant, 2009. Study on the trace elements in Swertia chirayita (Roxb.) H. Karsten. Biol. Trace Elem. Res., 133: 350-356.
    CrossRef

  104. Negi, J.S., P. Singh, G.J. Nee Pant and M.S.M. Rawat, 2009. Quantitative assessment of xanthone derivatives in Swertia chirata (Wall.) by RP-HPLC with UV detection. Med. Plants Int. J. Phytomed. Relat. Ind., 1: 97-101.
    Direct Link

  105. Negi, J.S., P. Singh, M.S.M. Rawat and G.J. Pant, 2010. Qualitative and quantitative determination of major xanthones in Swertia speciosa by high performance liquid chromatography. Med. Plants Int. J. Phytomed. Relat. Ind., 2: 45-50.
    Direct Link

  106. Negi, J.S., P. Singh, G.J. Nee Pant and M.S.M. Rawat, 2010. Study on the variations of mineral elements in Swertia speciosa (G. Don). Biol. Trace Element Res., 138: 300-306.
    CrossRef

  107. Falah, S., T. Suzuki and T. Katayama, 2008. Chemical constituents from Swietenia macrophylla bark and their antioxidant activity. Pak. J. Biol. Sci., 11: 2007-2012.
    CrossRefPubMedDirect Link

  108. Kossah, R., C. Nsabimana, H. Zhang and W. Chen, 2010. Optimization of extraction of polyphenols from syrian sumac (Rhus coriaria L.) and chinese sumac (Rhus typhina L.) fruits. Res. J. Phytochem., 4: 146-153.
    CrossRefDirect Link

  109. Sombie, P.A.E.D., A. Hilou, C. Mounier, A.Y. Coulibaly, M. Kiendrebeogo, J.F. Millogo and O.G. Nacoulma, 2011. Antioxidant and anti-inflammatory activities from Galls of Guiera senegalensis J.F. Gmel (Combretaceae). Res. J. Med. Plant, 5: 448-461.
    CrossRefDirect Link

  110. Negi, J.S., V.K. Bisht, A.K. Bhandari, M.K. Bharti and R.C. Sundriyal, 2011. Chemical and pharmacological aspects of Toona (Meliaceae). Res. J. Phytochem., 5: 14-21.
    CrossRef

  111. Bhan, S., R. Kumara, A.K. Kalla and K.L. Dhar, 1987. Isomeric 2,3-seco-hopene lactones from Swertia petiolata. Phytochem., 26: 3363-3364.
    CrossRef

  112. Saxena, M.A., P.S. Murthy and S.K. Mukherjee, 1996. Mode of action of three structurally different hypoglycemic agents: A comparative study. Ind. J. Exp. Biol., 34: 351-355.
    PubMedDirect Link

  113. Sharma, P.V., 1982. Alkaloids of Swertia chirata. Ind. J. Pharm. Sci., 44: 36-52.

  114. Tian, L.Y., X. Bai, X.H. Chen, J.B. Fang, S.H. Liu and J.C. Chen, 2010. Anti-diabetic effect of methylswertianin and bellidifolin from Swertia punicea Hemsl. and its potential mechanism. Phytomed., 17: 533-539.
    Direct Link

  115. Zhang, J.S., X.M. Wang, X.H. Dong, H.Y. Yang and G.P. Li, 2009. Studies on chemical constituents of Swertia mussotii. Zhong Yao Cai, 32: 511-514.
    PubMed

Related Articles

Chemical Constituents from Swietenia macrophylla Bark and Their Antioxidant Activity
In vitro Antimicrobial Activities of Different Fractions of Swertia chirata Ethanolic Extract
Antioxidant and Anti-inflammatory Activities from Galls of Guiera senegalensis J.F. Gmel (Combretaceae)
Optimization of Extraction of Polyphenols from Syrian Sumac (Rhus coriaria L.) and Chinese Sumac (Rhus typhina L.) Fruits
Chemical and Pharmacological Aspects of Toona (Meliaceae)

Comments


Vinod Visht Reply
23 May, 2011

The MS is very well written in informative way

Leave a Comment


Your email address will not be published. Required fields are marked *

Useful Links

  • Journals
  • For Authors
  • For Referees
  • For Librarian
  • For Socities

Contact Us

Office Number 1128,
Tamani Arts Building,
Business Bay,
Deira, Dubai, UAE

Phone: +971 507 888 742
Email: [email protected]

About Science Alert

Science Alert is a technology platform and service provider for scholarly publishers, helping them to publish and distribute their content online. We provide a range of services, including hosting, design, and digital marketing, as well as analytics and other tools to help publishers understand their audience and optimize their content. Science Alert works with a wide variety of publishers, including academic societies, universities, and commercial publishers.

Follow Us
© Copyright Science Alert. All Rights Reserved