Research Article
A K-Means and Naive Bayes Learning Approach for Better Intrusion Detection

Citation to this article as recorded by ASCI
. : -.

Asif-Iqbal, H., N.I. Udzir, R. Mahmod and A.A.A. Ghani, 2011. Filtering events using clustering in heterogeneous security logs. Inform. Technol. J., 10: 798-806.
CrossRef  |  Direct Link  |  

Hashemi, V.M., Z. Muda and W. Yassin, 2013. Improving intrusion detection using genetic algorithm. Inform. Technol. J., 12: 2167-2173.
CrossRef  |  Direct Link  |  

Hsu, S.C., 2012. The RFM-based institutional customers clustering: case study of a digital content provider. Inform. Technol. J., 11: 1193-1201.
CrossRef  |  Direct Link  |  

Lei, X. and P. Zhou, 2012. An intrusion detection model based on GS-SVM Classifier. Inform. Technol. J., 11: 794-798.
CrossRef  |  Direct Link  |  

Liu, S.L, Y.H. Liu, Y.F. Tang and R.H. Jiang, 2012. A novel pattern recognition approach based on immunology. Inform. Technol. J., 11: 134-140.
CrossRef  |  Direct Link  |  

Rasheed, M.M., O. Ghazali and N.M. Norwawi, 2012. Intelligent signature detection for scanning internet worms. Inform. Technol. J., 11: 760-767.
CrossRef  |  

Rasheed, M.M., O. Ghazali and R. Budiarto, 2012. Fast detection of stealth and slow scanning worms in transmission control protocol. J. Applied Sci., 12: 2156-2163.
CrossRef  |  Direct Link  |  

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
©  2021 Science Alert. All Rights Reserved