HOME JOURNALS CONTACT

Trends in Applied Sciences Research

Year: 2012 | Volume: 7 | Issue: 4 | Page No.: 324-330
DOI: 10.17311/tasr.2012.324.330
A Short Note on Intuitionistic Fuzzy Ternary Subpolygroups
Bijan Davvaz

Abstract: After the introduction of fuzzy sets by Zadeh, several researchers were conducted on the generalization of fuzzy sets. The notion of intuitionistic fuzzy sets was introduced by Atanassov as a generalization of the notion of fuzzy sets. An intuitionistic fuzzy set for a given universal set is defined by a degree of membership function and a degree of non-membership function. The notion of ternary polygroup is a generalization of the notion of polygroup in the sense of Comer. In this research, we study the concept of intuitionistic fuzzy ternary subpolygroups of a ternary polygroup.

Fulltext PDF Fulltext HTML

How to cite this article
Bijan Davvaz , 2012. A Short Note on Intuitionistic Fuzzy Ternary Subpolygroups. Trends in Applied Sciences Research, 7: 324-330.

Keywords: ternary polygroup, polygroup, Hypergroup and intuitionistic fuzzy set

INTRODUCTION

The theory of algebraic hyperstructures which is a generalization of the concept of algebraic structures first was introduced by Marty (1934) and had been studied in the following decades and nowadays by many mathematicians and many papers concerning various hyperstructures have appeared in the literature. The basic definitions of the object can be found (Corsini, 1993; Corsini and Leoreanu, 2003). A hyperstructure is a non-empty set H together with a map called hyperoperation, where P*(H) denotes the set of all the non-empty subsets of H. A hyperstructure (H,·) is called a hypergroup if the following axioms hold:

(x · y)· z = x ·(y · z) for all x, y, z∈H
a · H = H · a = H for all a∈H

If x∈H and A, B are non-empty subsets of H, then by A.B, A.x and x.B we mean:

The concept of fuzzy sets was introduced by Zadeh (1965). Let X be a set. A fuzzy subset A of X is characterized by a membership function μA:X→[0, 1], which associates with each point x∈X its grade or degree of membership μA(x)∈[0, 1]. Let A and B be two fuzzy subsets of X. Then:

A = B if and only if μA(x) = μB(x), for all x∈X
A⊆B if and only if μA(x)≤μB(x), for all x∈X
C = A∪B if and only if μC(x) = max {μA(x), μB(x)}, for all x∈X
D = A∩B if and only if μD(x) = min{μA(x), μB(x)} for all x∈X
The complement of A, denoted by Ac is defined by μAc(x) = 1-μA(x). for all x∈X

Fuzzy set theory and its applications in several branches of science are growing day by day. These applications can be found in various fields such as computer science, artificial intelligence, operation research, management science, control engineering, expert systems and many others, for example (Ali, 2011; Ayanzadeh et al., 2012; Dehini et al., 2012; Fatemi, 2011; Saad et al., 2007; Yufeng et al., 2011).

Rosenfeld (1971) applied this concept to the theory of groups and studied fuzzy subgroups of a group (Ersoy et al., 2002; Fathi and Salleh, 2009; Massadehss, 2011). Davvaz (1999) applied fuzzy sets to the theory of algebraic hyperstructures and studied their fundamental properties. Further investigations are contained in many papers, for example see the list of references.

Definition 1: Let (H,·) be a hypergroup and let μ a fuzzy subset of H. Then, μ is said to be a fuzzy subhypergroup of H if the following axioms hold:

for all x, y∈H
for all x, a∈H there exists y∈H such that x ∈ a · y and min{μ(a), μ(x)}≤μ(y)
for all x, a∈H there exists z∈H such that x ∈ z · a and min{μ(a), μ(x)}≤μ(z)

POLYGROUPS AND TERNARY POLYGROUPS

Application of hypergroups have mainly appeared in special subclasses. For example, polygroups which are certain subclasses of hypergroups are studied by Comer (1984) and are used to study color algebra. Quasi-canonical hypergroups (called polygroups by Comer) were introduced by Bonansinga and Corsini (1982), as a generalization of canonical hypergroups introduced by Mittas (1972). Some algebraic and combinatorial properties were developed by Comer. We recall the following definition from Comer (1984). A polygroup is a multi-valued system where -1:P→P and * is a hyperoperation from PxP into the family of non-empty subsets of P such that the following axioms hold:

(x*y)*z = x*(y*z) for all x, y, z∈P
e*x = x*e = x
x∈y*z implies y∈x*z-1 and z∈y-1*x

Zahedi et al. (1995) defined the concept of fuzzy subpolygroups of a polygroup which is a generalization of the concept of Rosenfeld's fuzzy subgroups and special case of Davvaz’s for fuzzy subhypergroups. Let be a polygroup and let μ a fuzzy subset of P. Then μ is definition said to be a fuzzy subpolygroup of P if the following axioms hold:

min{μ(x), μ(y)}≤μ(z) for all x, y∈P and for all z∈x*y
μ(x)≤μ(x-1) for all x∈P

The concept of n-ary hypergroup is defined by Davvaz and Vougiouklis (2006), which is a generalization of the concept of hypergroup in the sense of Marty and a generalization of n-ary group, too. Davvaz and Corsini (2007) introduced the notion of a fuzzy n-ary subhypergroup of an n-ary hypergroup. Then this concept studied (Davvaz et al., 2009; Davvaz and Leoreanu-Fotea, 2010a, b; Ghadiri and Waphare, 2009; Kazanci et al., 2010, 2011; Zhan et al., 2010). A ternary hypergroup is a particular case of an n-ary hypergroup for n = 3. Davvaz and Leoreanu-Fotea (2010b) studied the ternary hypergroups associated with a binary relations. Davvaz et al. (2011) provided examples of ternary hyperstructures associated with chain reactions in chemistry (also, see, Davvaz (2009)).

Let H be a non-empty set and f:HxHxH→P*(H). Then f is called a ternary hyperoperation on H and the pair (H, f) is called a ternary hypergroupoid. If A, B, C are non-empty subsets of H, then we define:

The ternary hypergroupoid (H, f) is called a ternary semihypergroup if for every a1,...a5∈H, we have:

A ternary semihypergroup (H, f) is called a ternary hypergroup if for all a, b, c∈H there exist x, y, z∈H such that:

Notice that a ternary semigroup (S, f) is said to be a ternary group if it satisfies the following property that for all a, b, c∈S, there exist unique x, y, z∈S such that:

A ternary polygroup is a multi-valued system where e∈P, -1: P→P is a unitary operation and f is a ternary hyperoperation from PxPxP into the family of non-empty subsets of P such that the following axioms hold:

(1)

for every α1,..., α5εP, e is a unique element such that f (x, e, e) = f (e, x, e) = x for every xεP and e-1 = e, zε f (x1,x2, x3) implies x1ε f (z, x2-1, x3-1), x2ε f (x1-1, z, x3-1) and x3ε f (x1-1, x2-1, z).

INTUITIONISTIC FUZZY SETS

We recollect some relevant basic preliminaries and in particular, the study of Atanassov (1986).

Let X be a fixed set. An intuitionistic fuzzy set A in X is an object having the form:

A = {<x, μA(x), λA(x)>|xεX}

where, the functions μA: X→[0,1] and λA: X→[0,1] are the degree of membership and the degree of non-membership of the element x ε X to the set A, respectively; moreover, 0≤μA(x)+λA(x)≤1 must hold. Note that a Zadeh fuzzy set, written down as an intuitionistic one, is of the form:

A = {<x, μA(x), 1-μA(x)>|xεX}

Let X be a non-empty set and let A = {<x, μA(x), λA(x)>|xεX} and B = {<x, μB(x), λB(x)>|xεX} be two intuitionistic fuzzy sets. Then:

A⊆B iff μA(x)≤μB(x) and λA(x)≥λB(x) for all x ε X
A = B iff A⊆B and B⊆A
Ac = {<x, λA(x), μA(x)>|x ε X}
A∩B = {<x, min {μA(x), μB(x)},max {λA(x), λB(x)}>|x ε X}
A∪B = {<x max {μA(x), μB(x)},min {λA(x), λB(x)}>|x ε X}
□A = {<x, μA(x), 1-μA(x)>|xεX}
○A = {<x, 1-λA(x),λA(x)>|xεX}

For the sake of simplicity, we shall use the symbol A = (μA, λA) or A = (μ, λ) for intuitionistic fuzzy set A = {<x, μA(x), λA(x)>|xεX}.

The concept of intuitionistic fuzzy subgroup of a group is introduced by Biswas (1989). Let G be an ordinary group. An intuitionistic fuzzy A = (μA, λA) set in G is called an intuitionistic fuzzy subgroup of G if:

min {μA(x), μA (y)}≤μA(xy) for all x, yεG
μA(x)≤μA(x-1) for all xεG
λA(xy)≤max {λA(x), λA(y)} for all x, yεG
λA(x-1)≤λA(x) for all xεG

INTUITIONISTIC FUZZY TERNARY SUBPOLYGROUPS

Definition 2: Let be a ternary polygroup and A = (μ, λ) be an intuitionistic fuzzy subset of P. Then, μ is said to be an intuitionistic fuzzy ternary subpolygroup of P if the following axioms hold:

for all x,y,z∈P
for all x∈P
for all x,y,z∈P
for all x∈P

For any fuzzy set μ of H and any tε[0, 1] we define two sets:

which are called an upper and lower t-level cut of μ and can be used to the characterization of μ.

Theorem 1: Let ⟨P, f, e-1⟩ be a ternary polygroup and A = (μ, λ) be an intuitionistic fuzzy subset of P. Then, U(μ; t) and L(λ; t) are subpolygroups of P for every tεIm(μA)∩Im(λA).

Proof: Suppose that A= (μ, λ) is an intuitionistic fuzzy ternary subpolygroup of P. For every x, y, εU (μ; t) we have min {μ (u), μ (y), μ (z)}≥t and so infαεf(z, y, z) {μ(α)}≥t. Thus, for every x, y z, εU (μ; t) we have μ(α)≥t . Therefore, f(x, y, z)⊆U (μ; t). Now, if xε U (μ; t) then t≥μ(x) Since μ(x)≤μ(x-1) we conclude that which implies that x-1εU(μ; t).

Also, for every x, y, z εL (μ; t) we have max {λ(x), λ(y), λ(z)} and so:

Thus, for every αεf(x, y, z) we have λ(α)≤t. Therefore, f (x, y, z)⊆L (μ; t). Now, if xεL (μ; t) then λ (x)≤t. Since λ(x-1)≤λ(x) we conclude that λ(x-1)≤t which implies that x-1 εL (μ; t).

Theorem 2: Let ⟨P, f, e, -1⟩ be a ternary polygroup and A = (μ, λ) be an intuitionistic fuzzy subset of P such that the non-empty sets U (μ; t) and L (λ; t) are ternary subpolygroups of P for all tε[0, 1]. Then, A = (μ, λ) is an intuitionistic fuzzy ternary subpolygroup of P.

Proof: Assume that for every 0≤t≤1, U (μ; t) (≠φ) is a ternary subpolygroup of P. For every x, y, zεP, we put t0 = min {μ (x), μ (y), μ (z)}. Then x, y, zεU (μ; t) and so f (x, y, z)⊆U(μ; t). Therefore, for every αεf (x, y, z) we have μ(α)≥t0 implying that:

and in this way the first condition of Definition 2 is verified. In order to verify the second condition, let xεP. We put t1 = μ(x)} Since U(μ; t) is a ternary subpolygroup, x-1 εU (μ; t1), which implies that μ(x), ≤μ(x-1)

Now, suppose that for every 0≤t≤1, L (λ; t) (≠ø) is a ternary subpolygroup of P. For every x, y, z, εP, we put t0 = max {λ(x), λ(y), λ(z)}. Then x, y, z, ε L (μ; t0) and so f (x, y, z)⊆L (μ; t0). Therefore, for every αεf (, y, z) we have λ(α)≤t0 implying that:

and in this way the third condition of Definition 2 is verified. In order to verify the last condition, let xεP. We put t1 = λ(x)} Since L (λ; t) is a ternary subpolygroup, x-1 εL(λ; t1), which implies that λ(x-1)≤λ(x).

Corollary 1: Let χK be the characteristic function of a ternary subpoly K of P. Then, K = (χK, χck) is an intuitionistic fuzzy ternary subpolygroup of P.

Corollary 2: Let ⟨P, f, e, -1⟩ be a ternary polygroup. Then A = (μ, λ) is an intuitionistic fuzzy ternary subpolygroup of P if and only if ~ A and ◊A are intuitionistic fuzzy ternary subhypergroup of P.

Proof: Suppose that A = (μ, λ) is an intuitionistic fuzzy ternary polygroup of P. For every x, y, z in P, we have:

min {μ(x), μ(y), μ(z)}≤ infαεf (x, y, z) {μ (α)}, or
min {1-μc (x), 1-μc (y), 1-μc (z)}≤ supαεf (x, y, z) {1-μc (α)}, or
min {1-μc (x), 1-μc (y), μc (z)}≤ supαεf (x, y, z)c (α)}, or
supαεf (x, y, z)c (x)≤ 1-min (1-μc(x ), 1-μc (y), 1-μc (z)}, or
supαεf (x, y, z)c (α)≤ max (μc (x ), μc (y), μc (z)}.

Since μ is a fuzzy ternary subpolygroup of P, so for every xεP, μ(x)αμ(x-1) or 1-μ(x-1)≤1-μ(x) which implies that. The converse also can be proved similarly.

REFERENCES

  • Ali, H.K., 2011. Fuzzy controller design of servo system. Asian J. Applied Sci., 4: 403-413.
    CrossRef    


  • Atanassov, K.T., 1986. Intuitionistic fuzzy sets. Fuzzy Sets Syst., 20: 87-96.
    CrossRef    Direct Link    


  • Biswas, R., 1989. Intuitionistic fuzzy subgroups. Math. Forum, 10: 37-46.


  • Ayanzadeh, R., A.S.Z. Mousavi and E. Shahamatnia, 2012. Fuzzy cellular automata based random numbers generation. Trends Applied Sci. Res., 7: 96-102.
    CrossRef    Direct Link    


  • Comer, S.D., 1984. Polygroups derived from cogroups. J. Algebra, 89: 397-405.
    Direct Link    


  • Corsini, P. and V. Leoreanu, 2003. Applications of Hyperstructures Theory, Advanced in Mathematics. Kluwer Academic Publishers, Dordrecht


  • Davvaz, B., 1999. Fuzzy Hv-groups. Fuzzy Sets Syst., 101: 191-195.
    CrossRef    


  • Davvaz, B., 2009. Fuzzy hyperideals in ternary semihyperrings. Iran. J. Fuzzy Syst., 6: 21-36.
    Direct Link    


  • Davvaz, B. and P. Corsini, 2007. Fuzzy n-ary hypergroups. J. Intell. Fuzzy Syst., 18: 377-382.
    Direct Link    


  • Davvaz, B. and V. Leoreanu-Fotea, 2010. Binary relations on ternary semihypergroups. Commun. Algebra, 38: 3621-3636.
    CrossRef    


  • Davvaz, B. and T. Vougiouklis, 2006. n-Ary hypergroups. Iran. J. Sci. Technol. Trans. A, 30: 165-174.


  • Davvaz, B., P. Corsini and V. Leoreanu-Fotea, 2009. Atanassov`s intuitionistic (S, T)-fuzzy n-ary sub-hypergroups and their properties. Inform. Sci., 179: 654-666.
    CrossRef    


  • Davvaz, B., A.D. Nezad and A. Benvidi, 2011. Chain reactions as experimental examples of ternary algebraic hyperstructures. Match Commun. Math. Comput. Chem., 65: 491-499.


  • Davvaz, B. and V. Leoreanu-Fotea, 2010. Intuitionistic fuzzy n-ary hypergroups. Multiple-Valued Logic Soft Comput., 16: 87-104.
    Direct Link    


  • Dehini, R., B. Ferdi and B. Bekkouche, 2012. Fuzzy logic controller optimization based on GA for harmonic mitigation. J. Artif. Intell., 5: 26-36.
    CrossRef    Direct Link    


  • Ersoy, B.A., A. Tepecik and I. Demir, 2002. Cartesian product on fuzzy prime ideals. J. Applied Sci., 2: 1022-1024.
    CrossRef    Direct Link    


  • Fatemi, A., 2011. Entropy of stochastic intuitionistic fuzzy sets. J. Applied Sci., 11: 748-751.
    CrossRef    Direct Link    


  • Fathi, M. and A.R. Salleh, 2009. Intuitionistic fuzzy groups. Asian J. Algebra, 2: 1-10.
    CrossRef    Direct Link    


  • Ghadiri, M. and B.N. Waphare, 2009. N-ary polygroups. Iran. J. Sci. Technol. Trans. A, 33: 145-158.
    Direct Link    


  • Kazanci, O., S. Yamak and B. Davvaz, 2011. On n-ary hypergroups and fuzzy n-ary homomorphism. Iran J. Fuzzy Syst., 8: 1-17.


  • Kazancı, O., B. Davvaz and S. Yamak, 2010. Fuzzy n-ary hypergroups related to fuzzy points. Neural Comput. Appl., 19: 649-655.
    CrossRef    Direct Link    


  • Massadehss, M.O., 2011. Some structure properties of anti L-Q-Fuzzy and normal fuzzy subgroups. Asian J. Algebra.


  • Mittas, J., 1972. Hypergroupes canoniques. Math. Balkanica Beograd, 2: 165-179.


  • Rosenfeld, A., 1971. Fuzzy groups. J. Math. Anal. Appl., 35: 512-517.


  • Saad, O.M., M.K. El-Shafei and L.E. Ezzat, 2007. On treating multiobjective cutting stock problem in the aluminum industry under fuzzy environment. Trends Applied Sci. Res., 2: 374-385.
    CrossRef    Direct Link    


  • Yufeng, S., Z. Chunjie and L. Zheng, 2011. Fuzzy sliding-mode control for the swing arm used in a fourier transform spectrometer. Inform. Technol. J., 10: 736-747.
    CrossRef    Direct Link    


  • Zhan, J., B. Davvaz and K.P. Shum, 2010. On probabilistic n-ary hypergroups. Inform. Sci., 180: 1159-1166.
    Direct Link    


  • Zadeh, L.A., 1965. Fuzzy sets. Inform. Control, 8: 338-353.
    CrossRef    Direct Link    


  • Zahedi, M.M., M. Bolurian and A. Hasankhani, 1995. On polygroups and fuzzy subpolygroups. J. Fuzzy Math., 3: 1-15.


  • Marty, F., 1934. On a generalization of the notion of group. Proceedings of the 8th Congress Mathematiciens Scandinave, (CMS'34), Stockholm, pp: 45-49.


  • Bonansinga, P. and P. Corsini, 1982. On semihypergroup and hypergroup homomorphisms. Boll. Un. Mat. Ital., B6: 717-727.


  • Corsini, P., 1993. Prolegomena of Hypergroup Theory. 2nd Edn., Aviani Editor, Udine, Italy

  • © Science Alert. All Rights Reserved