HOME JOURNALS CONTACT

Pakistan Journal of Biological Sciences

Year: 2005 | Volume: 8 | Issue: 12 | Page No.: 1739-1745
DOI: 10.3923/pjbs.2005.1739.1745
Killing Effect of Membrane Vesicles Produced by Gram-negative Bacteria on Other Bacteria
Essam A. Azab, Mostafa H. Osfor and Iman A. Seleem

Abstract: The gram-negative bacteria Citrobacter freundii, Enterobacter cloacae NCTC10005, Erwinia carotovora NCPPB312, Klebsiella pneumoniae, Proteus vulgaris 1753 and Serratia marcescens HIM 307-2 produced natural outer membrane vesicles under normal growth conditions. The membrane vesicles showed bacteriolytic activities against different gram-positive and gram-negative host bacteria. Different killing potencies were obtained by membrane vesicles of different producing organisms against different recipient host strains. In most of membrane-vesicle-producing strains, the exposure to the β-lactam antibiotic cefotaxime and the aminoglycoside antibiotic gentamicin induced the formation of cefotaxime membrane vesicles and gentamicin membrane vesicles, respectively, larger in size and with higher lytic activities against the susceptible host bacteria compared to those produced under normal growth conditions. But the transmission electron microscopy and the plate assay showed that cefotaxime inhibited the formation of membrane vesicles by E. cloacae NCTC10005. Natural membrane vesicles produced by Serratia marcescens HIM 307-2 and P. vulgaris 1753 recorded the widest killing spectrum compared to other natural membrane vesicles. Cefotaxime membrane vesicles of K. pneumoniae showed the highest lytic potency, while C. freundii membrane vesicles exhibited the least lytic spectrum. The cefotaxime membrane vesicles produced by K. pneumoniae had the largest size of 200 nm followed by natural membrane vesicles of P. vulgaris 1753 which had a size of 125 nm, while the smallest membrane vesicles were formed by Serratia marcescens HIM 307-2 grown under normal conditions. The membrane vesicles produced by different gram-negative bacteria used in this study had spherical shapes and sizes ranged from 30 to 200 nm.

Fulltext PDF

How to cite this article
Essam A. Azab, Mostafa H. Osfor and Iman A. Seleem, 2005. Killing Effect of Membrane Vesicles Produced by Gram-negative Bacteria on Other Bacteria. Pakistan Journal of Biological Sciences, 8: 1739-1745.

Keywords: Garm-negative bacteria, outer membrane vesicles, bacteriolysis, cefotaxime and gentamicin

REFERENCES

  • Mayrand, D. and D. Grenier, 1989. Biological activities of outer membrane vesicles. Can. J. Microbiol., 35: 607-613.
    PubMed    


  • Wensink, J. and B. Witholt, 1981. Outer membrane vesicles released by normally growing Escherichia coli contain very little lipoprotein. Eur. J. Biochem., 116: 331-335.
    CrossRef    


  • Hayashi, J., N. Hamada and H.K. Kuramitsu, 2002. The autolysin of Porphyromonas gingivalis is involved in outer membrane vesicle release. FEMS. Microbiol. Lett., 216: 217-222.
    Direct Link    


  • Beveridge, T.J., 1999. Structure of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol., 181: 4725-4733.
    Direct Link    


  • Kadurugamuwa, J.L. and T.J. Beveridge, 1995. Virulence factor are released from Pseudomanas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin a novel mechanism of enzyme secretion. J. Bacteriol., 177: 3998-4008.
    Direct Link    


  • Kadurugamuwa, J.L. and T.J. Beveridge, 1996. Bacteriolytic effect of the membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens conceptually new antibiotics. J. Bacteriol., 178: 2767-2774.


  • Li, Z., A.J. Clarke and T.J. Beveridge, 1996. A major autolysin of Pseudomonas aeruginosa Subcellular distribution potential role in cell growth and division and secretion in surface membrane vesicles. J. Bacterol., 178: 2479-2488.
    Direct Link    


  • Kadurugamuwa, J.L., A. Mayer, P. Messner, M. Sara, U.B. Sleytr and T.J. Beveridge, 1998. S-layered Aneurinibacillus and Bacillus sp. are susceptible to lytic action of Pseudomonas aeruginosa membrane vesicles. J. Bacteriol., 180: 2306-2311.
    Direct Link    


  • Martin, N.L. and T.J. Beveridge, 1986. Gentamicin interaction with Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 29: 1079-1087.


  • Mayrand, D. and S.C. Holt, 1988. Biology of asaccharolytic black-pigmented Bacteroides species. Microbiol. Rev., 52: 134-152.
    Direct Link    


  • Wispelwey, B., E.J. Hansen and M. Scheld, 1989. Haemophilus influenza outer membrane vesicles induced blood-brain barrier permeability during experimental meningitis. Infect. Immun., 57: 2559-2562.


  • Kadurugamuwa, J.L., A.J. Clarke and T.J. Beveridge, 1993. Surface action of gentamicin on Pseudomonas aeruginosa. J. Bacteriol., 175: 5798-5805.


  • Whitmire, W.M. and C.F. Garon, 1993. Specific and nonspecific response of murine B cells to membrane blebs of Borrelia burgdorferi. Infec. Immun., 61: 1460-1467.
    Direct Link    


  • Azab, E.A., 2004. Membrane vesicles and β-lactamase in E. herbicola 48. Egypt J. Biol., 6: 1-11.


  • Chatterjee, S.N. and J. Das, 1967. Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J. Gen. Microbiol., 49: 1-11.
    CrossRef    PubMed    Direct Link    


  • Devoe, I.W. and J.E. Gilchrist, 1973. Release of endotoxin in the form of cell wall blebs during in vitro growth of Neisseria meningitides. J. Exp. Med., 138: 1156-1166.


  • Williams, G.G. and S.C. Holt, 1985. Characteristics of the outer membrane of selected oral Bacteroid species. Can. J. Microbial., 31: 238-250.


  • Dorward, D.E., C.F. Garon and R.C. Judd, 1989. Export and intracellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J. Bacteriol., 171: 2499-2505.


  • Kondo, K., A. Takade and K. Amako, 1993. Release of outer membrane vesicles from Vibrio cholerae and Vibrio parahaemolyticus. Microbiol. Immunol., 37: 149-152.
    PubMed    


  • Wai, S.M., A. Takade and K. Amako, 1995. Release of outer membrane vesicles from the strains of enterotoxigenic Escherichia coli. Microbiol. Immunol., 39: 451-456.
    PubMed    


  • Tipper, D.J. and A. Wright, 1979. The Structure and Biosynthesis of Bacterial Cell Wall. In: Mechanisms of Adaptations, Sokatch, J.R. and L.N. Ornston (Eds.). Academic Press, New York, pp: 291-426


  • Tomasz, A., 1979. The mechanism of irreversible antimicrobial effects of penicillins how the beta-lactam antibiotic kill and lyse bacteria. Ann. Rev. Microbiol., 33: 113-137.


  • Yocum, R.R., J.R. Rasmussen and J.L. Strominger, 1980. The mechanism of action of penicillin penicillin activates the active sites of Bacillu stearothermophilus D-alanine carboxypeptidase. J. Biol. Chem., 255: 3977-3986.


  • Neu, H.C., 1982. Factors that affect the in vitro activity of cephalosporin antibiotics. J. Antimicrob. Chemother., 10: 11-23.
    Direct Link    


  • Tipper, D.J., 1986. Mode of Action of β-Lactam Antibiotics. In: Β-lactam Antibiotics for Clinical Use, Queener, S.F., L.A.Webber and S.W. Queener (Eds.). Macel Dekker, New York, pp: 17-47


  • Spratt, B.G., 1977. Properties of penicillin-binding proteins of Escherichia coli K12. Eur. J. Biochem., 72: 341-352.


  • Georgopapadakou, N.H. and R.B. Sykes, 1983. Bacterial Enzymes Interacting with Β-Lactam Antibiotics. In: Antibiotics Containing the Β-Lactam Structure Handbook of Experimental Pharmacology, Demain, A.L. and N.A. Solomon (Eds.). Springer-Verlag, Berlin, Heidelberg, pp: 1-63

  • © Science Alert. All Rights Reserved