HOME JOURNALS CONTACT

Pakistan Journal of Biological Sciences

Year: 2005 | Volume: 8 | Issue: 12 | Page No.: 1720-1738
DOI: 10.3923/pjbs.2005.1720.1738
Enhanced Nodulation and Nitrogen Fixation in Common Bean (Phaseolus vulgaris L.) Via Conjugation and Azide Resistant Mutants in Rhizobial Strains
K. A. Zaied, Z. A. Kosba, M. A. Nassef and A. A. Zehry

Abstract: Conjugal transfer of DNA was carried out in this study by inducing diparental and triparental transconjugants of Rhizobium to improve the symbiotic phenotype of the microsymbiot. Here, this study describe also the isolation and symbiotic characterization of Azr mutants of Rhizobium phaseoli with enhanced symbiotic nitrogen fixation capability. Tri-parental transconjugants were involved DNA from Pseudomonas putida to supported the role of antibiotics in disease suppression of the isolates colonize root system to protect it against pathogens and also to degrade phenolic compounds present in root exudates, which may affect on the suppression nodulation process, thereby improving nodulation, plant growth and yield. All new recombinants induced including transconjugants and azide resistant mutants were evaluated in pots experiments, thus leading to select the efficient strains to be evaluated under field conditions. All new recombinants derived from the mating between; RLbp7 x Pseudomonas putida x R. L. bv. viciae significantly stimulated the formation of chlorophyll a and total chlorophyll. Three recombinants out of five exhibited high nodulation, in addition, two out of five produced significant increase in root dry matter production above the mid-parents. All tri-parental transconjugants resulted from the cross between; RLbp9 x Pseudomonas putida x R. L. bv. viciae, produced significant amounts of IAA above the mid-parents when grown in the presence of exogenous trypton and ethanol. Three out of five tri-parental transconjugants resulted from the cross between; RLbp9 x Pseudomonas putida x R. L. bv. viciae were efficient in symbiosis because of higher number of nodules developed on the root system of the host plant, which ranged between 22-46. The same recombinants increased root dry matter yield above uninoculated plants. Four out of five tri-parental transconjugants resulted from the cross between; RLbp10 x Pseudomonas putida x R. L. bv. viciae, synthesize significant amounts of IAA over their mid-parents in the presence of exogenous tryptophan and trypton. However, three out of five produced significant amounts of IAA from ethanol and all five recombinants produced significant amounts of IAA from lactic acid above their mid-parents. In addition, three recombinants (RLbp10 x Pseudomonas putida x R. L. bv. viciae), developed significant number of nodules above the mid-parents on the root system, which ranged between 16-25. Plants inoculated with some of azide resistant mutants (Azr4, Azr5 and Azr6), di-parental transconjugants (DPM-Tr3 and DPM-Tr5) and tri-parental transconjugants (TPM-Tr8) appeared significant increase in grain weight per plant over uninoculated plants.

Fulltext PDF

How to cite this article
K. A. Zaied, Z. A. Kosba, M. A. Nassef and A. A. Zehry, 2005. Enhanced Nodulation and Nitrogen Fixation in Common Bean (Phaseolus vulgaris L.) Via Conjugation and Azide Resistant Mutants in Rhizobial Strains. Pakistan Journal of Biological Sciences, 8: 1720-1738.

Keywords: Rhizobium leguminosarum bv. Phaseoli, nitrogen fixation, conjugation and Phaseolus vulgaris L

REFERENCES

  • Martinez, E., D. Romero and R. Palacios, 1990. The Rhizobium genom. Crit. Rev. Plant Sci., 9: 59-93.


  • Romero, D., S. Brom, J.M. Salazar, M.L. Girard, R. Palacios and G. Davila, 1991. Amplification and deletion of a Nod-nif region in the symbiotic plasmid of Rhizobium phaseoli. J. Bacteriol., 173: 2435-2441.


  • Flores, M., V. Gonzalez, S. Brom, E. Martinez and D. Pinero et al., 1987. Reiterated DNA sequences in Rhizobium and Agrobacterium sp. J. Bacteriol., 169: 5782-5788.


  • Petes, T.D. and C.W. Hill, 1988. Recombination between repeated genes in microorganisms. Annu. Rev. Genet., 22: 147-168.


  • Flores, M., V. Gonzalez, M.A. Pardo, A. Leija and E. Martinez et al., 1988. Genomic instability in Rhizobium phaseoli. J. Bacteriol., 170: 1191-1196.


  • Graham, P.H., 1981. Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: A review. Field Crops Res., 4: 93-112.
    CrossRef    


  • Buttery, B.R., S.J. Park and W.I. Findlay, 1987. Growth and yield of white bean (Phaseolus vulgaris L.) in response to nitrogen phosphorus and potassium fertilizer and to inoculation with Rhizobium. Can. J. Plant Sci., 67: 425-432.


  • Thies, J.E., P.W. Singleton and B.B. Bohlool, 1991. Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Applied Environ. Microbiol., 57: 19-28.
    PubMed    


  • Allen, O.M., 1959. Experimental in Soil Bacteriology. 1st Edn., Burgess Publishing Co., USA


  • Vincent, J.M., 1970. A Manual for the Practical Study of the Root Nodule Bacteria. International Biological Programme. Blackwell Scientific Publications, Oxford


  • Sharma, S.B., K. Sakadevan and S. Sharma, 1997. Mutation conferring azide resistance enhance symbiotic nitrogen fixation in Rhizobium loti. Plant Soil, 189: 221-229.


  • Mayak, S., T. Tirosh and B.R. Glick, 1997. The Influence of Plant Growth Promoting Rhizobacterium Pseudomonas putida GR12-2 on the Rooting of Mung Bean Cuttings. In: Plant Growth-Promoting Rhizobacteria: Present Status and Future Prospects, Ogoshi A., K. Kobayashi, Y. Homma, F. Kodama, N. Kondo and S. Akino (Eds.). OECD, Paris, France, pp: 313-315


  • Zygmunt, C. and M. Filutowizc, 1979. Azide mutagenesis in gram-negative bacteria reversion of the mutagenic effect by L-cystine. Mutation Res., 66: 301-305.


  • Collins, C.H. and P.M. Lyne, 1985. Microbiological Methods. 5th Edn., Butterworths, London, pp: 167-181


  • Grinsted, J. and P.M. Bennet, 1990. Plasmid Technology. 2nd Edn., Academic, London, pp: 60


  • Pilet, P.E. and R. Chollet, 1970. Sur le dosage colorimetrique de l'acide indolylacetique. C.R. Acad. Sci. Ser. D., 271: 1675-1678.


  • Kucey, R.M.N., 1989. Response of field bean (Phaseolus vulgaris L.) to levels of Rhizobium leguminosarium bv. Phaseoli inoculation in soils containing effective indigenous R. leguminosarium bv. Phaseoli populations. Can. J. Plant Sci., 69: 419-426.


  • Pineda, P. and J.K. Nolt, 1990. Response of bean varieties to inoculation with selected Rhizobium strains in El-Salvador. Turrialba, 3: 410-415.


  • Mackinney, G., 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem., 104: 315-322.
    Direct Link    


  • APHA, AWWA, WEF, 1992. Standard Methodsfor the Examination of Water and Wastewater. 18th Edn., American Public Health Association, Washington


  • Gomez, K.A. and A.A. Gomez, 1984. Statistical Procedures for Agricultural Research. 2nd Edn., John Wiley and Sons Inc., Hoboken, New Jersey, ISBN: 978-0-471-87092-0, Pages: 704
    Direct Link    


  • Brandl, M.T. and S.E. Lindow, 1996. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indol-3-acetic acid synthesis in Erwinia herbicola. Applied Environ. Microbiol., 62: 4121-4128.


  • Patten, C.L. and B.R. Glick, 2002. Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can. J. Microbiol., 48: 635-642.
    PubMed    


  • Martens, D.A. and W.T. Frankenberger Jr., 1994. Assimilation of exogenous 2′-14C-indole-3-acetic acid and 3′-14C-tryptophan exposed to the roots of three wheat varieties. Plant Soil, 166: 281-290.
    CrossRef    Direct Link    


  • Brandl, M.T. and S.E. Lindow, 1998. Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Applied Environ. Microbiol., 64: 3256-3263.


  • Tricot, F., Y. Crozat and S. Pellerin, 1997. Root system growth and nodule establishment on pea (Pisum sativum L.). J. Exp. Botany, 48: 1935-1941.
    Direct Link    


  • Kasperbauer, M.J. and P.G. Hunt, 1994. Shoot root assimilate allocation and nodulation of Vigna unguiculata seedlings as influenced by shoot light environment. Plant Soil, 161: 97-101.


  • Merck, 1994. Microbiology Manual E Merck Darmstadt Brereich Labor D- 64271. Darmstadt University of Technology, Germany


  • Calvert, H.E., M.K. Pense, M. Pierce, N.S.A. Malik and W.D. Bauer, 1984. Anatomical analysis of the development and distribution of Rhizobium infections in soybean roots. Can. J. Botany, 62: 2375-2384.


  • Kosslak, R.M. and B. Bohlool, 1984. Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side. Plant Physiol., 75: 125-130.


  • Peterson, B.C. and R.H. Rownd, 1985. Recombination sites in plasmid drug resistance gene amplification. J. Bacteriol., 164: 1359-1361.


  • Mathis, J.N., W.M. Barbour and G.H. Elkan, 1985. Effect of Sym plasmid curing on symbiotic effectiveness in Rhizobium fredii. Applied. Environ. Microbiol., 49: 1385-1388.


  • Jacobson, C.B., J.J. Pasternak and B.R. Glick, 1994. Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR 12-2. Can. J. Microbbiol., 40: 1019-1025.


  • Li, J., D.H. Ovakim, T.C. Charles and B.R. Glick, 2000. An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr. Microbiol., 41: 101-105.
    PubMed    


  • Martinez, E., R. Palacios and F. Sanchez, 1987. Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J. Bacteriol., 169: 2828-2834.


  • Fett, W.F., S.G. Osman and M.F. Dunn, 1987. Auxin production by plant pathogenic pseudomonas and xanthomonads. Applied Environ. Microbiol., 53: 1839-1845.


  • Kaper, J.M. and H. Veldstra, 1958. On the metabolism of tryptophan by Agrobacterium tumefaciens. Biochem. Biophys. Acta, 30: 401-420.


  • Spaink, H.P., 2000. Root nodulation and infection factors produced by rhizobial bacteria. Ann. Rev. Microbiol., 54: 257-288.
    CrossRef    Direct Link    


  • Schmidt, P.E., W.J. Broughto and D.Werner, 1994. Nod factors of Bradyrhizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudates. Mol. Plant Microbe Interact., 7: 384-390.


  • Novak, K., L. Ludmila and S. Vlandimir, 2004. Rhizobia Nod gene-inducing activity in pea nodulation mutants: Dissociation of nodulation and flavonoid response. Physiol. Plantarum, 120: 546-555.
    Direct Link    


  • Burn, J., L., Rossen and A.W.B. Johnston, 1987. Four classes of mutations in the NodD gene of Rhizobium leguminosarum biovar Viciae that affect its ability to autoregulate and/or activate other Nod genes in the presence of flavonoid inducers. Genes Dev., 1: 456-464.


  • Omer, Z.S., R. Tombolini, A. Broberg and B. Gerhardson, 2004. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul., 43: 93-96.
    CrossRef    Direct Link    


  • Patten, C.L. and B.R. Glick, 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol., 42: 207-220.
    PubMed    Direct Link    


  • White, F.F. and S.F. Ziegler, 1991. Cloning of the genes for indole acetic acid synthesis from Pseudomonas syringae pv. Syringae. Mol. Plant Microbiol. Interact, 4: 207-210.


  • Cooper, J.E. and J.R. Rao, 1995. Flavonoid metabolism by rhizobia mechanisms and products. Symbiosis, 19: 91-98.


  • Novak, K., P. Chovanec, V. Skrdleta, M. Kropacoa, L. Lisa and M. Nemcova, 2002. Effect of exogenous flavonoid on nodulation of pea (Pisum sativum L.). J. Exp. Bot., 53: 1735-1745.
    Direct Link    


  • Rostas, K., E. Kondorosi, B. Horvath, A. Simoncsits and A. Kondorosi, 1986. Conservation of extended promoter regions of nodulation genes in Rhizobium. Proc. Nat. Acad. Sci. USA., 83: 1757-1761.
    Direct Link    


  • Kondorosi, E., J. Gyuris, J. Schmidt, M. John and E. Duda et al., 1989. Positive and negative control of Nod gene expression in Rhizobium meliloti is required for optimal nodulation. EMBO J., 8: 1331-1340.


  • Vazquez, M., A. Davalos, A. Penas, F. Sanche and C. Quinto, 1991. Novel organization of the common nodulation genes in Rhizobium leguminosarum bv. Phaseoli strains. J. Bacteriol., 173: 1250-1258.


  • Schmidt, J.R., R.Wingender, M. John, U. Wieneke and J. Schell, 1988. Rhizobium meliloti nodA and NodB genes are involved in generating compounds that stimulate mitosis of plant cells. Proc. Nat. Acad. Sci. USA., 85: 8578-8582.


  • Johnson,D., E.L. Roth and G. Stacy, 1989. Immunogold localizationof the NodC and NodA proteins of Rhizobium meliloti. J. Bacteriol., 171: 4583-4588.


  • John, M., J. Schmidt, U. Wieneke, H.D. Krussmann and J. Schell, 1988. Transmembrane orientation and receptor-like structure of the Rhizobium meliloti common nodulation protein NodC. EMBO J., 7: 583-588.


  • Rolfe, B.G., 1988. Flavones and isoflavones as inducing substances of legume nodulation. Biofactors, 1: 3-10.
    PubMed    Direct Link    


  • Brom, S., E. Martinez, G. Davila and R. Palacios, 1988. Narrow- and broad-host-range plasmids of Rhizobium sp. strains that nodulate Phaseolus vulgaris. Applied Environ. Microbiol., 54: 1280-1283.


  • Hungria, M., M.C.P. Neves and R.L. Victoria, 1985. Assimilacao do nitrogeno pelo feijoeiro II absorcao e translocacao do N mineral e N2 fixado. Revista Brasileira Ciencia Solo, 9: 201-209.


  • Oaks, A., 1992. A re-evaluation of nitrogen assimilation in roots. Biol. Sci., 42: 103-111.
    Direct Link    


  • Popescu, A., 1998. Contribution and limitations to symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.) in Romania. Plant Soil, 204: 117-125.


  • Hardarson, G., F.A. Bliss, M.R.C. Rivers, R.A. Henson and J.A.K. Nolt et al., 1993. Genotypic variation in biological nitrogen fixation by common bea. Plant Soil, 152: 59-70.


  • Hernandez, J.M., G.R. Aguilar, F. Sanchez and M. Soberon, 1990. Isolation of Rhizobium phaseoli Tn5 induced mutants with altered expression of cytochrome terminal oxidases O and AA3. Proceedings of the 5th International Symposium on the Molecular Genetics of Plant-Microbe Interactions, (ISMGPMI'90), Switzerland, pp: 141-141.


  • Ram, J., R.P. Grover, R.B. Riwari and S. Kumar, 1978. Improvement in the nitrogen fixing effectiveness of Rhizobium leguminosarum by incorporation genetic resistance to azide. Ind. J. Exper. Biol., 16: 1321-1322.


  • Rownd, R.H., 1982. R Plasmid Drug Resistance Gene Amplification in Bacteria. In: Gene Amplification, Schimke, R.T. (Ed.). Cold Spring Harbor Laboratory, Cold Spring Harbor, NewYork, pp: 273-279


  • Noel, K.D., A, Samby, L. Fernandez, J. Leemans and M.A. Cevallos, 1984. Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J. Bacterio., 158: 148-155.


  • Cladwell, B.E., 1969. Initial competition of root nodule bacteria on soybean in field environments. Agron. J., 61: 813-815.

  • © Science Alert. All Rights Reserved