HOME JOURNALS CONTACT

Journal of Biological Sciences

Year: 2014 | Volume: 14 | Issue: 2 | Page No.: 142-148
DOI: 10.3923/jbs.2014.142.148
Prevalence and Resistance to Antimicrobial Agents of Campylobacter sp. Isolated from Dogs in India
Amit Kumar Verma, Amit Kumar, Shanker Kumar Singh, Anu Rahal, Iftekhar Ahmed, Deepti Singh, Aashish Pratap Singh and Lalit Singh

Abstract: Globally, Campylobacters have been reported as leading cause of gastroenteritis in man as well as animals and considered as emerging zoonotic problem particularly in developing countries including India. A cross-sectional study was conducted to know the prevalence and epidemiological determinants for Campylobacter spp. in dogs in and around Mathura city, Uttar Pradesh, India. Based on isolation, cultural and biochemical characterization of bacteria, the prevalence of Campylobacter spp. was 34.24%. Younger dogs (less than 1 year of age) were more likely to carry Campylobacter spp. High prevalence of Campylobacter spp. supports the hypothesis that dogs, particularly younger animals, may be an important source of Campylobacter infection for humans. Breed-wise prevalence showed that non-descript dogs (45.97%) were more likely to carry Campylobacter infections. Dogs showing clinical signs of gastroenteritis were showing higher prevalence (47.21%) in comparison to that of animals without gastro-intestinal disorders (15.04%). Out of 113 Campylobacter isolates of canine origin, two isolates were resistant to all the nineteen antibiotics used in the study, while all the isolates were resistant to Streptomycin, Ampicillin, Amoxycillin, Aztreonam, Lincomycin, Tetracyclin, Oxytetracyclin and Penicillin. A high rate of resistance was observed to Cefotaxim (97.35%), Peefloxacin (91.15%), Chloramphenicol (90.27%), Ofloxacin (84.07%), Ciprofloxacin (83.18%), Cefaclor (80.53%), Nitrofurazone (76.11%), Norfloxacin (74.33%), Gentamicin (42.48%), Amikacin (40.71%) and Enrofloxacin (36.28%). Our results indicate Amikacin and Gentamicin as drugs suitable for the treatment of campylobacteriosis in dogs.

Fulltext PDF Fulltext HTML

How to cite this article
Amit Kumar Verma, Amit Kumar, Shanker Kumar Singh, Anu Rahal, Iftekhar Ahmed, Deepti Singh, Aashish Pratap Singh and Lalit Singh, 2014. Prevalence and Resistance to Antimicrobial Agents of Campylobacter sp. Isolated from Dogs in India. Journal of Biological Sciences, 14: 142-148.

Keywords: Campylobacter, dogs, animals, antibiotic sensitivity, diagnosis, isolation, prevalence and resistance

INTRODUCTION

Enteropathogenic bacteria are distributed worldwide and well to live as commensal in the gastrointestinal tract of man as well as animals. The zoonotic potential of these bacteria viz., Salmonella (Verma et al., 2007, 2008, 2011a, b; Sachan et al., 2013), E. coli (Malik et al., 2013; Kumar et al., 2013) and Campylobacter (Kumar et al., 2012a, b) was very well established. Among these Campylobacters are emerging food borne pathogens with increasing incidences and leads to severe gastroenteritis and other complications like Guillain-Barre Syndrome, reactive arthritis, haemolytic uraemic syndrome, meningitis, carditis, pancreatitis, septic arthritis, etc., (Stern and Line, 2000; Tenkate and Stafford, 2001; Hannu et al., 2002; Skirrow, 2006; Levin, 2007; Lindmark et al., 2009; Kirkpatrick and Tribble, 2011; Man, 2011; Rajendran et al., 2012; Bouwman et al., 2013; Hauri et al., 2013). In animals, these Campylobacters may cause diarrhoea and other reproductive disorders like abortion, early embryonic mortality and many other complications (Humphrey et al., 2007; Kumar et al., 2012a, b).

Various studies have reported the association of Campylobacter species with diarrhea in dogs (Steinhauserova et al., 2000; Misawa et al., 2002; Kumar et al., 2012a) however, their real role in canine enteritis is not clear (Koene et al., 2004). Generally, children are more susceptible to this infection (Wolfs et al., 2001; Chattopadhyay et al., 2001). Although, there is various reports from developed countries regarding prevalence of Campylobacters in dogs but there is little published information about Campylobacter infections and their drug resistance pattern in dogs of developing countries including India. Therefore, the present study was undertaken to determine the occurence of thermotolerant Campylobacter and their antibiogram in dogs of Mathura city and nearby areas, Uttar Pradesh, India.

MATERIALS AND METHODS

Study design, area and sample collection: This cross-sectional study was conducted during the period of almost one year in 2012-2013 in Mathura city and nearby areas, Uttar Pradesh India (Fig. 1). Geographically, the city is situated at the latitude 27°30’N and longitude 77°40’E with an elevation of 174 metre above sea level. A total of 330 rectal swabs for bacteriological culture were collected from dogs presented to Teaching Veterinary Clinical Complex, Mathura with the epidemiological information viz., breed, age, sex and health status.

Thermophilic Campylobacter isolation and identification: The samples in the Campylobacter enrichment HiVeg TM broth base with addition of polymixin B sulphate, rifampicin, trimethoprim and cycloheximide were incubated at 42-43°C under microaerophilic conditions in the microaerophilic jars with a lighting candle (Fig. 2). After incubation, the enriched samples were properly shaken and sub-cultured onto Campylobacter selective agar (HiMedia, Mumbai) supplemented with 10% defibrinated sheep blood and addition of Polymixin B, vancomycin, trimethoprim and cephalothin for primary isolation ofc thermophilic Campylobacter.

Fig. 1: Map of Uttar Pradesh showing Mathura as study area

Fig. 2: Microaerophilic jar with a lighting candle

The inoculated petridishes were incubated at 42°C for 48 h under microaerophilic conditions. Suspected thermophilic Campylobacter colonies that were Gram negative, curved, or spiral rods and showed corkscrew-like motion, were confirmed biochemically (Skirrow and Benzamin, 1980; Garcia et al., 1985).

Antibiogram: All the Campylobacter isolates were assessed for their antimicrobial susceptibility testing using disc-diffusion method (Bauer et al., 1966) following the NCCLS guidelines (NCCLS 2002). A total of 19 antimicrobial discs (Hi-Media, Mumbai) of commonly used antibacterial drugs viz., amikacin (30 μg), ampicillin (10 μg), amoxycillin (20 μg), Aztreonam (30 μg), Cefaclor (30 μg), Cefotaxim (30 μg), ciprofloxacin (30 μg), chloramphenicol (30 μg), enrofolxacin (10 μg), gentamicin (10 μg), Lincomycin (10 μg), Nitrofurazone (100 μg), Norfloxacin (10 μg), Ofloxacin (5 μg), Oxytetracyclin (30 μg), Peefloxacin (5 μg), Penicillin (10 units), streptomycin (10 μg) and tetracyclin (30 μg) were used to assess the drug resistance pattern of Campylobacter isolates.

RESULTS AND DISCUSSION

A total of 330 faecal samples were collected from dogs with and without clinical signs of gastroenteritis and isolation of bacteria was attempted in all the samples. Based on isolation, cultural and biochemical characterization of bacteria, the prevalence of Campylobacter spp. was 34.24% (Table 1). The prevalence of Campylobacter spp. in faecal samples of dogs is within the range (17-59%) as reported in various studies (Sandberg et al., 2002; Engvall et al., 2003; Koene et al., 2004; Rossi et al., 2008; Parsons et al., 2010; Kumar et al., 2012a, b).

Table 1: Occurrence of Campylobacter infection in dogs influenced by age, sex, breed and health status

The variation between these studies might be either due to different study population or methods used for detecting the bacteria (Guest et al., 2007; Rossi et al., 2008; Acke et al., 2009; Parsons et al., 2010; Kumar et al., 2012a, b).

Younger dogs (less than 1 year of age) were more likely to carry Campylobacter spp. (Table 1). High prevalence of Campylobacter spp. supports the hypothesis that dogs especially the puppies (less than 1 year of age) may be an important source of Campylobacter infection for man. Our findings were similar to previous studies (Engvall et al., 2003; Acke et al., 2006, 2009; Guest et al., 2007). But contrary to our findings, a small number of studies conducted by Wieland et al. (2005) and Tsai et al. (2007) have suggested that age is not a predisposing factor for Campylobacter infection. Breed-wise prevalence showed that non-descript dogs (45.97%) were more likely to carry Campylobacter infections (Table 1). This might be due to the way of living of non-descript dogs. As they roam outside the home freely in comparison to other breeds of dog leading to more exposure and chances of getting infection from stray dogs or animals in and around areas (Kumar et al. 2012b).

Dogs showing clinical signs of gastroenteritis were showing higher prevalence (47.21%) in comparison to that of animals without gastro-intestinal disorders (15.04%) (Table 1). Similar to our study, various researchers (Guest et al., 2007) reported the association between Campylobacter infection and clinical signs, especially in younger dogs (Fox et al., 1983; Nair et al., 1985; Burnens et al., 1992).

Table 2: Drug susceptibility pattern of all the Campylobacter isolates (n = 113) from dogs

However, contrary to our findings, there are various reports suggesting no relationship between diarrhoea and Campylobacter spp. infection status (Engvall et al., 2003; Acke et al., 2006; Rossi et al., 2008; Parsons et al., 2010; Kumar et al., 2012b), suggesting that the organism is a commensal (Engvall et al., 2003). Campylobacter infection were detected in 15.04% of the dogs either apprarantly healthy or having some problem other than gastroenteritis (Table 1) showing that these animals can be carriers of Campylobacter species and may a source of infection for other pets and human beings (Acke et al., 2006; 2009; Kumar et al., 2012b).

All the Campylobacter isolates were tested for drug sensitivity using 19 antibacterial drugs and the results were shown in Table 2.

Out of 113 Campylobacter isolates of canine origin, two isolates were resistant to all the nineteen antibiotics used in the study, while all the isolates were resistant to Streptomycin, Ampicillin, Amoxycillin, Aztreonam, Lincomycin, Tetracycline, Oxytetracycline and Penicillin. A high rate of resistance was observed to Cefotaxim (97.35%), Peefloxacin (91.15%), Chloramphenicol (90.27%), Ofloxacin (84.07%), Ciprofloxacin (83.18%), Cefaclor (80.53%), Nitrofurazone (76.11%), Norfloxacin (74.33%), Gentamicin (42.48%), Amikacin (40.71%) and Enrofloxacin (36.28%). Antibiotic sensitivity studies on Campylobacter isolates were conducted by various researchers in different countries and reported varying degree of resistance to same drug (Little et al., 2008; Moran et al., 2009; Kumar et al., 2012a). High resistance to ampi-cloxacillin, tetracycline, ofloxacin, ciprofloxacin etc were previous reported by various researchers like Little et al. (2008) and Miflin et al. (2007). Quinolones were considered as suitable drug for treatment of Campylobacteriosis (Uaboi-Egbenni et al., 2011) but higher resistance to ciprofloxacin and ofloxacin was seen, which might be either due to genetic mutations interfering with bacterial DNA gyrase (Greene and Watson, 2003) or selection pressure due to injudicious use of antibiotics (Norma et al., 2007; Biasi et al., 2011). Present results indicated Amikacin and Gentamicin as drugs suitable for the treatment of canine campylobacteriosis. This also opens up therapeutic possibilities for these drugs in human medicine.

This cross-sectional study has the some limitations in its design; nevertheless, it is performed in only little veterinary practice involving small number of dogs and few related determinants. Therefore, there is a requirement of detailed study considering larger population in order to establish a better understanding of the epidemiology of Campylobacter infection in dogs of developing countries like India and ultimately help in making strategies to control or reduce the risk of this infection in man. The use of antibiotics as threauptic and/or prophylaxis for man as well as animals should be monitored because acquisition of antibiotic resistant strains of Campylobacters by man has serious public health implications.

CONCLUSION

From the present study, it can be concluded that Campylobacter infection was prevalent in dogs of study area suggesting their possible role in transmission to human beings. Younger dogs (less than 1 year of age) were more likely to carry Campylobacter spp. it is worth highlighting that dogs, particularly puppies may be an important source of Campylobacter infection for humans. High levels of resistance to antibiotics commonly used for prophylaxis and therapeutic is of public health significance. Present results indicated Amikacin and Gentamicin as drugs suitable for the treatment of canine campylobacteriosis. However, the results emphasize the use of antibiotic sensitivity test be conducted before prescribing the antibiotics.

ACKNOWLEDGMENTS

This study was supported b y Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishvidhyalaya Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India under university funding scheme. The authors are highly thankful to Head, Department of Veterinary Microbiology and Immunology; Department of Veterinary Epidemiology and Preventive Medicine, Director, Teaching Veterinary Clinical Complex, Dean, College of Veterinary Sciences and Animal Husbandry, Director Research and Hon’ble Vice Chancellor, Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishvidhyalaya Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India; for providing all the necessary support and facilities for conducting this study. We wish to thank staff of Department of Veterinary Microbiology and Immunology especially Smt. Mamta for her technical assistance. The authors are highly thankful to dog owners, who allowed their dogs to participate in the study.

REFERENCES

  • Acke, E., K. McGill, O. Golden, B.R. Jones, S. Fanning and P. Whyte, 2009. Prevalence of thermophilic Campylobacter species in household cats and dogs in Ireland. Vet. Rec., 164: 44-47.
    CrossRef    Direct Link    


  • Acke, E., P. Whyte, B.R. Jones, K. McGill, J.D. Collins and S. Fanning, 2006. Prevalence of thermophilic Campylobacter species in cats and dogs in two animal shelters in Ireland. Vet. Record, 158: 51-54.
    PubMed    Direct Link    


  • Bauer, A.W., W.M.M. Kirby, J.C. Sherris and M. Turck, 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 45: 493-496.
    CrossRef    PubMed    Direct Link    


  • Biasi, R.S., R.E.F. DeMacedo, M.A.S. Malaquias and P.R. Franchin, 2011. Prevalence, strain identification and antimicrobial resistance of Campylobacter spp. isolated from slaughtered pig carcasses in Brazil. Food Control, 22: 702-707.
    Direct Link    


  • Bouwman, L.I., P. Niewold and J.P. van Putten, 2013. Basolateral invasion and trafficking of Campylobacter jejuni in polarized epithelial cells. PLoS One, Vol. 8.


  • Burnens, A.P., B. Angeloz-Wick and J. Nicolet, 1992. Comparison of Campylobacter carriage rates in diarrheic and healthy pet animals. Zentralbl. Veterinarmedizin B, 39: 175-180.
    PubMed    


  • Chattopadhyay, U.K., M. Rashid, S.K. Sur and D. Pal, 2001. The occurrence of campylobacteriosis in domestic animals and their handlers in and around Calcutta. J. Med. Microbiol., 50: 933-934.
    PubMed    


  • Engvall, E.O., B. Brandstrom, L. Andersson, V. Baverud, G. Trowald-Wigh and L. Englund, 2003. Isolation and identification of thermophilic Campylobacter species in faecal samples from Swedish dogs. Scand. J. Infect. Dis., 35: 713-718.
    PubMed    Direct Link    


  • Fox, J.G., R. Moore and J.I. Ackerman, 1983. Campylobacter jejuni-associated diarrhea in dogs. J. Am. Vet. Med. Assoc., 183: 1430-1433.
    PubMed    Direct Link    


  • Garcia, M.M., H. Lior, R.B. Stewart, G.M. Ruckerbauer, J.R. Trudel and A. Skljarevski, 1985. Isolation, characterization and serotyping of Campylobacter jejuni and Campylobacter coli from slaughter cattle. Applied Environ. Microbiol., 49: 667-672.
    Direct Link    


  • Greene, C.E. and A.D.J. Watson, 2003. Quinolone resistence in Campylobacter. J. Antimicrob. Chemother., 51: 740-742.
    CrossRef    Direct Link    


  • Guest, C.M., J.M. Stephen and C.J. Price, 2007. Prevalence of Campylobacter and four endoparasites in dog populations associated with hearing dogs. J. Small Anim. Prac., 48: 632-637.
    PubMed    


  • Hannu, T., L. Mattila, H. Rautelin, P. Pelkonen, P. Lahdenne, A. Siitonen and M. Leirisalo-Repo, 2002. Campylobacter triggered reactive arthritis: A population-based study. Rheumatology (Oxford), 41: 312-318.
    PubMed    


  • Hauri, A.M., M. Just, S. McFarland, A. Schweigmann, K. Schlez and J. Krahn, 2013. Campylobacteriosis outbreaks in the state of Hesse, Germany, 2005-2011: Raw milk yet again. Dtsch. Med. Wochenschr., 138: 357-361.
    CrossRef    PubMed    


  • Humphrey, T., S. O'Brien and M. Madsen, 2007. Campylobacters as zoonotic pathogens: A food production perspective. Int. J. Food Microbiol., 117: 237-257.
    CrossRef    PubMed    Direct Link    


  • Kirkpatrick, B.D. and D.R. Tribble, 2011. Update on human Campylobacter jejuni infections. Curr. Opin. Gastroenterol., 27: 1-7.
    CrossRef    PubMed    


  • Koene, M.G.J., D.J. Houwers, J.R. Dijkstra, B. Duim and J.A. Wagenaar, 2004. Simultaneous presence of multiple Campylobacter species in dogs. J. Clin. Microbiol., 42: 819-821.
    Direct Link    


  • Kumar, A., A.K. Verma, S. Malik, M.K. Gupta, A. Sharma and A. Rahal, 2013. Occurrence of extended spectrum β-lactamases producing α hemolytic Escherichia coli in neonatal diarrhea. Pak. J. Biol. Sci.


  • Kumar, R., A.K. Verma, A. Kumar, M. Srivastava and H.P. Lal, 2012. Prevalence and antibiogram of campylobacter infections in dogs of Mathura, India. Asian J. Anim. Vet. Adv., 7: 434-440.
    CrossRef    Direct Link    


  • Kumar, R., A.K. Verma, A. Kumar, M. Srivastava and H.P. Lal, 2012. Prevalence of campylobacter sp. in dogs attending veterinary practices at Mathura, India and risk indicators associated with shedding. Asian J. Anim. Vet. Adv., 7: 754-760.
    CrossRef    Direct Link    


  • Levin, R.E., 2007. Campylobacter jejuni: A review of its characteristics, pathogenicity, ecology, distribution, subspecies characterization and molecular methods of detection. Food Biotechnol., 21: 271-347.
    CrossRef    Direct Link    


  • Lindmark, H., S. Boqvist, M. Ljungstrom, P. Agren, B. Bjorkholm and L. Engstrand, 2009. Risk factors for Campylobacteriosis: An epidemiological surveillance study of patients and retail poultry. J. Clin. Microbiol., 47: 2616-2619.
    PubMed    Direct Link    


  • Little, C.L., J.F. Richardson, R.J. Owen, E. de Pinna and E.J. Threlfall, 2008. Campylobacter and Salmonella in raw red meats in the United Kingdom: Prevalence, characterization and antimicrobial resistance pattern, 2003-2005. Food Microbiol., 25: 538-543.
    CrossRef    PubMed    Direct Link    


  • Malik, S., A. Kumar, A.K. Verma, M.K. Gupta, S.D. Sharma, A.K. Sharma and A. Rahal, 2013. Incidence and drug resistance pattern of Collibacillosis in cattle and buffalo calves in western Utter Pradesh in India. J. Anim. Health Prod., 1: 15-19.
    Direct Link    


  • Man, S.M., 2011. The clinical importance of emerging Campylobacter species. Nat. Rev. Gastroenterol. Hepatol., 8: 669-685.
    CrossRef    PubMed    Direct Link    


  • Miflin, J.K., J.M. Templeton and P.J. Blackall, 2007. Antibiotic resistance in Campylobacter jejuni and Campylobacter coli isolated from poultry in the South-East Queensland region. J. Antimicrob. Chemother., 59: 775-778.
    Direct Link    


  • Misawa, N., K. Kawashima, F. Kondo, E. Kushima, K. Kushima and P. Vandamme, 2002. Isolation and characterization of Campylobacter, Helicobacter and Anaerobiospirillum strains from a puppy with bloody diarrhea. Vet. Microbiol., 87: 353-364.
    CrossRef    


  • Moran, L., P. Scates and R.H. Madden, 2009. Prevalence of Campylobacter spp. in raw retail poultryonsale in Northern Ireland. J. Food Prot., 72: 1830-1835.
    Direct Link    


  • Nair, G.B., R.K. Sarkar, S. Chowdhury and S.C. Pal, 1985. Campylobacter infection in domestic dogs. Vet. Rec., 116: 237-238.
    PubMed    


  • Norma, P.V., R. Friendship and C. Dewey, 2007. Prevalence of resistance to 11 antimicrobials among Campylobacter coli isolated from pigs on 80 grower-finisher farms in Canada. Can. J. Vet. Res., 71: 189-194.
    Direct Link    


  • Parsons, B.N., C.J. Porter, R. Ryvar, J. Stavisky and N.J. Williams et al., 2010. Prevalence of Campylobacter spp. in a cross-sectional study of dogs attending veterinary practices in the UK and risk indicators associated with shedding. Vet. J., 184: 66-70.
    CrossRef    


  • Rajendran, P., S. Babji and A.T. George, 2012. Detection and identification of Campylobacterin stool samples of childrens and animals from Vellore, South India. Indian J. Med. Microbiol., 30: 85-88.
    PubMed    


  • Rossi, M., M.L. Hanninen, J. Revez, M. Hannula and R.G. Zanoni, 2008. Occurrence and species level diagnostics of Campylobacter spp., enteric Helicobacter spp. and Anaerobiospirillum spp. in healthy and diarrheic dogs and cats. Vet. Microbiol., 129: 301-314.
    PubMed    


  • Sachan, N., B. Nautiyal, R.K. Agarwal, V.P. Singh and A.K. Verma, 2013. Sero-epidemiological pattern of salmonellosis in animals of Rohilkhand region, Uttar Pradesh, India. J. Anim. Health Prod., 1: 6-9.
    Direct Link    


  • Sandberg, M., B. Bergsjo, M. Hofshagen, E. Skjerve and H. Kruse, 2002. Risk factors for Campylobacter infection in Norwegian cats and dogs. Prev. Vet. Med., 55: 241-253.
    PubMed    


  • Skirrow, M.B., 2006. John McFadyean and the centenary of the first isolation of Campylobacter species. Clin. Infect. Dis., 43: 1213-1217.
    CrossRef    Direct Link    


  • Skirrow, M.B. and J. Benzamin, 1980. Differentiation of enteropathogenic Campylobacter. J. Clin. Pathol., 33: 1122-1124.
    Direct Link    


  • Tenkate, T.D. and R.J. Stafford, 2001. Risk factors for Campylobacter infection in infants and young children: A matched case-control study. Epidemiol. Infect., 127: 399-404.
    CrossRef    PubMed    Direct Link    


  • Steinhauserova, I., K. Fojtikova and J. Klimes, 2000. The incidence and PCR detection of Campylobacter upsaliensis in dogs and cats. Lett. Applied Microbiol., 31: 209-212.
    PubMed    Direct Link    


  • Stern, N.D. and J.E. Line, 2000. Campylobacter. In: The Microbiological Safety and Quality of Food, Lund, B.M., T.C. Baird-Parker and G.M. Gould (Eds.). Aspen Publishers Inc., Gaithersburg, Maryland, pp: 1040-1056


  • Tsai, H.J., H.C. Huang, C.M. Lin, Y.Y. Lien and C.H. Chou, 2007. Salmonellae and Campylobacters in household and stray dogs in Northern Taiwan. Vet. Res. Commun., 31: 931-939.
    CrossRef    


  • Uaboi-Egbenni, P.O., P.O. Bessong, A. Samie and C.L. Obi, 2011. Prevalence, haemolysis and antibiograms of Campylobacters isolated from pigs from three farm settlements in Venda region, Limpopo province, South Africa. Afr. J. Biotechnol., 10: 703-711.
    Direct Link    


  • Verma, A.K., D.K. Sinha and B.R. Singh, 2007. Salmonellosis in apparently healthy dogs. J. Vet. Public Health, 5: 37-39.
    Direct Link    


  • Verma, A.K., D.K. Sinha and B.R. Singh, 2008. Micro-Agglutination Test (MAT) based sero-epidemiological study of salmonellosis in dogs. J. Immunol. Immunopathol., 10: 29-35.
    Direct Link    


  • Verma, A.K., D.K. Sinha and B.R. Singh, 2011. Seroprevalence study on salmonellosis in apparently healthy dogs by enzyme linked immunosobent assay. Indian J. Anim. Sci., 81: 3-5.


  • Verma, A.K., D.K. Sinha and B.R. Singh, 2011. Detection of Salmonella from clinical samples of dogs by PCR. Indian J. Anim. Sci., 81: 552-555.
    Direct Link    


  • Wieland, B., G. Regula, J. Danuser, M. Wittwer, A.P. Burnens, T.M. Wassenaar and K.D. Stark, 2005. Campylobacter spp. in dogs and cats in Switzerland, risk factor analysis and molecular characterization with AFLP. J. Vet. Med. B Infect. Dis. Vet. Public Health, 52: 183-189.
    PubMed    


  • Wolfs, T.F., B. Duim, S.P. Geelen, A. Rigter, F. Thomson-Carter and A. Fleer, 2001. Neonatal sepsis by Campylobacter jejuni: Genetically proven transmission from a household puppy. Clin. Infect. Dis., 32: e97-e99.
    CrossRef    PubMed    Direct Link    

  • © Science Alert. All Rights Reserved