HOME JOURNALS CONTACT

Journal of Biological Sciences

Year: 2006 | Volume: 6 | Issue: 3 | Page No.: 596-603
DOI: 10.3923/jbs.2006.596.603
Central Nifedipine-induced Alterations in Salivary Flow and Compounds: Role of Nitric Oxide
Wilson Abrao Saad, Ismael Francisco Motta Siqueira Guarda, Luiz Antonio de Arruda Camargo, Talmir Augusto Faria Brizola dos Santos, Sylvio Simoes and William Abrao Saad

Abstract: The aim of this study was to examine the role of nifedipine and Nitric Oxide (NO) on salivary flow and compounds (salivary amylase, saliva total proteins, saliva calcium, sodium and potassium). Male Holtzman rats weighting 200-250 g were anesthetized with zoletil 50 mg kg-1 (tiletamine chloridrate 125.0 mg and zolazepan chloridrate 125.0 mg) into quadriceps muscle and stainless steel cannulas were implanted into their lateral ventricle of the brain (LV). Animals in divided group were injected with nifedipine (50 μg μL-1) alone and in combination with 7-nitroindazol (7-NIT) (40 μg μL-1), neuronal NO Sinthase Inhibitor (nNOSI) and Sodium Nitroprussate (SNP) (30 μg μL-1) NO donor agent. As a secretory stimuli, pilocarpine dissolved in isotonic was administered intraperitoneally (ip) at a dosage of 10 mg kg-1 body weight. Saliva was collected for 7 min with four cotton balls weighing approximately 20 mg each, two of which were placed on either side of the oral cavity, with the other two placed under the tongue. Nifedipine treatment induced a reduction in saliva secretion rate and concentration of amylase, total protein and calcium without changes in sodium and potassium concentration in comparison with controls. Co-treatment of animals with nifedipine and SNP retained flow rate and concentration of amylase, total protein and calcium in normal levels. Co-treatment of animals with nifedipine and 7-NIT potentiated the effect of nifedipine on the reduction of saliva secretion and concentrations of amylase, total protein and calcium. Nifedipine (dihydroperidine) calcium-channel blocker widely in use is associated with salivary dysfunction acting in the central nervous system structures. NO might be the mechanism for protective effect against the nifedipine-induce salivary dysfunction, acting in the CNS.

Fulltext PDF

How to cite this article
Wilson Abrao Saad, Ismael Francisco Motta Siqueira Guarda, Luiz Antonio de Arruda Camargo, Talmir Augusto Faria Brizola dos Santos, Sylvio Simoes and William Abrao Saad, 2006. Central Nifedipine-induced Alterations in Salivary Flow and Compounds: Role of Nitric Oxide. Journal of Biological Sciences, 6: 596-603.

Keywords: Water intake, blood pressure, lateral ventricle, nifedipine, nitric oxide and saliva

REFERENCES

  • Abdollahi, M., A. Dehpour and F.L. Shafayee, 2000. L-arginine/nitric oxide pathway and interaction with lead acetate on rat submandibular gland function. Pharmacol. Toxicol., 87: 198-203.
    Direct Link    


  • Abdollahi, M., M. Nikfar and N. Abdoli, 2001. Potentiation by nitric oxide synthase inhibitor and calcium channel blocker of aspartame induced antinociception in the mouse formalin test. Fund. Clin. Pharmacol., 15: 117-123.
    Direct Link    


  • Abdollahi, M. and H. Safarhamidi, 2002. Protection by nitric oxide of morphine-induced inhibition of rat submandibular gland function. Pharmacol. Res., 45: 87-92.
    CrossRef    Direct Link    


  • Abdollahi, M., F. Fooladian, B. Emami, K. Zafarik and A. Bahreini-Moghadam, 2003. A: Protection by sildenafil and theophiline of lead acetate-induced oxidative stress in submandibular gland and saliva. Hum. Exp. Toxicol., 22: 587-592.
    Direct Link    


  • Baum, R.J., 1987. Neurotrasmitter control of secretion. J. Dental Res., 66: 628-632.


  • Bredt, D.S., P.M. Hwang and S.H. Snyder, 1990. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature, 347: 768-770.
    CrossRef    Direct Link    


  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254.
    CrossRef    PubMed    Direct Link    


  • Burnashev, N., 1996. Calcium permeability of glutamate-gated channels in the central nervous system. Curr. Opin. Neurobiol., 6: 311-317.
    Direct Link    


  • Catt, K.J., K. Sandberg and T. Balla, 1993. Angiotensin II Receptors and Signal Transduction Mechanisms. In: Cellular and Molecular Biology of the Renin-angiotensin System, Raizada M.K., M.L. Phillips and C. Sunmers (Eds.). CRC Press, London, pp: 307-356


  • Caraway, W.T., 1959. Amilase determination. Am. J. Clin. Pathol., 32: 97-97.


  • Catterall, W.A. and J. Striessnig, 1992. Receptor sites for Ca2+ channel antagonists. Trends Pharmacol. Sci., 13: 256-262.
    Direct Link    


  • Connerty, H.V. and A.R. Briggs, 1966. Calcium determination. Am. J. Clin. Pathol., 45: 290-290.


  • Damas, J., 1994. Pilocarpine-induce salivary secretion, kinin system and nitric oxide in rats. Arch. Physiol. Biochem., 102: 103-105.
    CrossRef    Direct Link    


  • Das, S.J. and I. Oisen, 2000. Keratinocyte growth factor is up regulated by the hyperplasia-inducing drug nifedipine. Cytokine, 12: 1566-1569.
    CrossRef    Direct Link    


  • Dehpour, A.R., P. Ghafourifar, M. Abdollahi and K. Mousavizadeh, 1995. On the relation of calcium channel blockers to rat parotid and submandibular glands function in vivo. General Pharmacol., 26: 619-622.
    CrossRef    Direct Link    


  • Edgar, W.M., 1992. Saliva its secretion composition and functions. Br. Dent. J., 172: 305-312.
    Direct Link    


  • Golkar, L., K.A. Yaekony and A.D. Fryer, 2000. Inhibition of neural M(2) muscarinic receptor function in the lungs by extracellular nitric oxide. Br. J. Pharmacol., 131: 312-318.
    CrossRef    Direct Link    


  • Ignarro, L.J., G.M. Bug, K.S. Wood, R.E. Byms and G. Chaudhuri, 1987. Endothelium derived-re1axing factor produced and re1eased from artery and vein is nitric oxide. Proc. Nat. Acad. Sci. USA., 84: 9265-9269.


  • Kondo, K.H., H. Suzuki, Y. Itaya and T. Saruta, 1984. Effects of calcium antagonists on central pressor and dipsogenic activities of angiotensin II in rats. Clin. Exper. Theory Practice, A6: 2007-2011.
    CrossRef    Direct Link    


  • Kostyuk, P.G. and A.N. Verkhratsky, 1995. Calcium Signaling in the Nervous System. John Wiely and Sons Ltd., Chichester


  • Lohinai, Z., A.D. Szekely, L. Soas and E. Feher, 1995. Distribution of nitric oxide synthase containing elements in the feline submandibular gland. Neurosci. Lett., 92: 9-12.
    Direct Link    


  • Lomniczi, A., A.M. Suburo, J.C. Elverdin, C.A. Mastronardi, S. Diaz, V. Rettori and S.M. McCann, 1998. Role of nitric oxide in salivary secretion. Neuroimmunomodulation, 5: 226-233.
    Direct Link    


  • Miller, R.J., 1988. Calcium signaling in neurons. Trellds Neurosci., 2: 415-419.


  • Mitsui, Y., N. Yasuda, S. Furuyama and H. Sugiya, 1997. Nitric oxide synthase activities in mammalian parotid and submandibular salivary glands. Arch. Oral Biol., 42: 621-624.
    Direct Link    


  • Modin, A., J.M. Pernow and A. Lundberg, 1994. Repeated renal and splenic sympathetic nerve stimulation in anaesthetized pigs: Maintained overflow of neuropeptide Y in controls but not after reserpine. J. Auton. Nerv. Syst., 49: 123-134.
    Direct Link    


  • Paxinos, G. and C. Watson, 1986. The Rat Brain in Stereotaxic Coordinates. Academic Press, New York


  • Pernu, H.E., K. Oikarinen, J. Hietanen and M. Knuuttila, 1989. Verapamil-induced gingival overgrowth: A clinical histological and biochemical approach. J. Oral. Pathol. Med., 18: 422-425.
    Direct Link    


  • Renzi, A., L.S. Utrilla, L.A.A Camargo, W.A. Saad, L.A. De Luca, J.V. Menani and N.C. Roslindo, 1989. Morphological alterations of the rat submandibular gland caused by lesion of the ventromedial nucleus of the hypothalamus. Rev. Odontol. UNESP., 18: 157-164.


  • Renzi, A., R.A. Lopes, M.A. Sala, L.A.A. Camargo, J.V. Menani, W.A. Saad and G.M. Campos, 1990. Morphological, morphometric and stereological study of submandibular glands in rats with lesion of the anteroventral region of the third ventricle (AV3V). Exp. Pathol., 38: 177-187.
    Direct Link    


  • Renzi, A., E. Colombari, R.M. Filho, J.E. Silveira and W.A. Saad et al., 1993. Involvement of the central nervous system in the salivary secretion induced by pilocarpine in rats. J. Dental Res., 72: 1481-1484.
    Direct Link    


  • Rossier, J.R., J.A. Cox, E.J. Niessor and C.L. Bertzen, 1989. A new class of calcium entry blocker defined by 1, 3-diphosphonates. J. Biol. Chem., 264: 16598-16607.
    Direct Link    


  • Saad, W.A., I.F.M.S. Guarda, R.S. Guarda, L.A.A. Camargo, T.F.A.B. Santos, W.A. Saad and S. Simoes, 2002. Role of nitric oxide and adrenoceptors of the central nervous system on the salivary flow induced by pilocarpine injection into the lateral ventricle. Pharmacol. Biochem. Behav., 72: 229-235.
    Direct Link    


  • Saad, W.A., I.F.M.S. Guarda, L.A.A. Camargo, T.A.F.B. Santos, W.A. Saad, S. Simoes and R.S. Guarda, 2002. Novel evidence that nitric oxide of the medial septal area influences the salivary secretion induced by pilocarpine. Life Sci., 70: 2403-2412.
    Direct Link    


  • Saad, W.A., I.F.M.S. Guarda, L.A.A. Camargo, T.A.F.B.S. Santos and R.S. Guarda et al., 2003. Role of nitric oxide of the median preoptic nucleus (MnPO) in the alterations of salivary flow, arterial pressure and heart rate induced by injection of pilocarpine into the MnPO and intraperitoneally. Braz. J. Med. Biol. Res., 36: 897-899.
    Direct Link    


  • Saad, W.A., L.I. Gutierrez, I.F.M.S. Guarda, L.A.A. Camargo and T.A.F.B. Santos et al., 2004. Nitric oxide of the supraoptic nudeus influences the salivary secretion, sodium renal excretion, urinary volume and arterial blood pressure induced by pilocarpine. Life Sci., 74: 1593-1596.


  • Saad, W.A., L.I. Gutierrez, R.C. Vendramine, A.H.J. Oliveira, L.A.A. Camargo and G. Garcia, 2005. Effect of pilocarpine and angiotensine II on salivary flow, total protein and electrolyte concentration of saliva. Int. J. Pharmacol., 1: 190-194.


  • Scharllert, R.S., 1978. Saliva hypersecretion during aphagia following lateral hypothalamic lesions. Physiol. Behav., 21: 461-463.
    CrossRef    Direct Link    


  • Siveramakrishnan, S. and G. Laurent, 1995. Pharmacological characterization of presynaptic calcium contents underlying glutamatergic transmission in the avian auditory brainstem. J. Neurosci., 15: 6576-6585.
    Direct Link    


  • Spedding, M. and R. Paoletti, 1992. Classification of ca1cium channels and the sites of action of drugs modifying channel function. Pharmacol. Rev., 44: 363-376.


  • Sunmers, C., M.K. Raizada, J. Kang, D. Lu and P. Posner, 1994. Receptor mediated effects of angiotensin II on neurons. Front. Neuroendocrinol., 15: 203-230.
    Direct Link    


  • Shourangiz, R., R. Ali, K. Bagher Reza and A. Mohammad, 2005. On the relation of nitric oxide to nifedipine-induced gingival hyperplasia and impaired submandibular glands function in rats in vivo. Fund. Clin. Pharmacol., 19: 65-71.
    Direct Link    


  • Takai, N., K. Uchihashi, Y. Higuchi, Y. Yoshida and M. Yamaguchi, 1999. Localization of neuronal-constitutive nitric oxide synthase and secretory regulation by nitric oxide in the rat submandibular and sublingual glands. Arch. Oral Biol., 44: 745-750.
    Direct Link    


  • Takakura, A.C., T.S. Moreira, Jr., L.A. De Luca, Jr., A. Renzi, J.V. Menani and E. Colombari, 2005. Effects of AV3V lesion on pilocarpine-induced pressor response and salivary gland vasodilatation. Brain Res., 1055: 111-121.
    CrossRef    Direct Link    


  • Vaucher, E., D. Linville and E. Hamel, 1997. Cholinergic basal forebrain projections to nitric oxide synthase-containing neurons in the rat cerebral cortex. Neuroscience, 79: 827-836.
    CrossRef    Direct Link    


  • Wang, S.Z., S.Z. Zhu and E.E. El-Fakahany, 1994. Efficient coupling of m5 muscarinic acetylcholine receptors to activation of nitric oxide synthase. J. Pharmacol. Exp. Ther., 268: 552-557.


  • Wiserman, L.R. and D. Faulds, 1995. Oral pilocarpine a review of its pharmacological proprieties and clinical potential in xerostomia. Drugs, 49: 143-155.
    Direct Link    


  • Zhu, B. and L. Herbert, 1997. Ca1cium channels mediate angiotensin II-induced drinking behaviour and c-fos expression in the brain. Brain Res., 778: 206-214.

  • © Science Alert. All Rights Reserved