HOME JOURNALS CONTACT

Journal of Biological Sciences

Year: 2005 | Volume: 5 | Issue: 5 | Page No.: 562-567
DOI: 10.3923/jbs.2005.562.567
Angiotensin and Arginine Vasopressin Receptor Subtypes of the Lateral Preoptic Area Effect on the Sodium Balance
Wilson Abrao Saad, Luiz Antonio de Arruda Camargo, Jose Antunes-Rodrigues, William Abrao Saad, Ismael Franscisco Motta Sigueira Guarda and Renata Saad Guarda

Abstract: It was speculated whether the influence of lateral pvasopressin (AVP) and angiotensin (ANG II). The present study investigated the effects of central administration of specific AVP and ANG II antagonists (d(CH2)5-Tyr (Me)-AVP (AAVP) and [Adamanteanacetyl1, 0-ET-D-Tyr2, Val4, Aminobutyryl6, Arg8,9]-AVP (ATAVP) antagonists of V1 and V2 receptors of AVP. Also the effects of losartan and CGP42112A (selective ligands of the AT1 and AT2 angiotensin receptors, respectively), was investigated on Na+ uptake and renal fluid and electrolyte excretion. After an acclimatization period of 7 days, the animals were maintained under tribromoethanol (200 mg kg 1 body weight, intraperitoneal) anesthesia and placed in a Kopf stereotaxic instrument. Stainless guide cannula was implanted into the LPO. AAVP and ATAVP injected into the LPO prior to AVP produced a reduction in the sodium intake responses. Both the AT1 and AT2 ligands administered into the LPO elicited a decrease in the sodium intake induced by AVP injected into the LPO, but losartan was more effective than CGP 42112A. AVP injection into LPO increased sodium renal excretion, but this was reduced by prior AAVP administration. The ATAVP produced a decreased in the natriuretic effect of AVP. The losartan injected into LPO previous to AVP decreased the sodium excretion and the CGP 421122A also decreased the natriuretic effect of AVP with a high intensity. The AVP produced an antidiuresis effect that was inhibited by prior administration into LPO of the ATAVP. The AAVP produced no change in the antidiuretic effect of AVP. These results suggest that LPO are implicated in sodium balance that is mediated by V1, V2, AT1 and AT2 receptors.

Fulltext PDF

How to cite this article
Wilson Abrao Saad, Luiz Antonio de Arruda Camargo, Jose Antunes-Rodrigues, William Abrao Saad, Ismael Franscisco Motta Sigueira Guarda and Renata Saad Guarda, 2005. Angiotensin and Arginine Vasopressin Receptor Subtypes of the Lateral Preoptic Area Effect on the Sodium Balance. Journal of Biological Sciences, 5: 562-567.

Keywords: Vasopressin, angiotensin receptor subtypes, lateral preoptic area and sodium balance

REFERENCES

  • Blass, E.M. and A.N. Epstein, 1971. A lateral preoptic osmosensitive zone for thirst in the rat. J. Comp. Physiol. Psichol., 76: 378-394.
    CrossRef    Direct Link    


  • Saad, W.A. and L.A.A. Camargo, 1980. Interaction between the lateral preoptic area and the subfornical organ in the control of water ingestion caused by cellular dehydration, hypotension, hypovolemia and deprivation. Behav. Neural Biol., 28: 138-149.
    CrossRef    Direct Link    


  • Silva, E., L. Hernandez, B. Quinonez, L.E. Gonzalez and C. Colasante, 2004. Selective amino acids changes in the medial and lateral preoptic area in the formalin test in rats. Neuroscience, 124: 395-404.
    CrossRef    Direct Link    


  • Camargo, L.A.A. and W.A. Saad, 1999. Renal effects of angiotensin II receptor subtype 1 and 2-selective ligands injected into the paraventricular nucleus of conscious rats. Regul. Peptides, 84: 91-96.
    Direct Link    


  • Thunhorst, R.T. and A.K. Johnson, 1994. Renin-angiotensin, arterial pressure and salt appetite in rats. Am. J. Physiol., 266: R458-R465.
    Direct Link    


  • Camara, A.K. and J. Osborn, 2001. Central AT1 and AT2 receptors mediate chronic intracerebroventricular angiotensin II-induced drinking in rats fed high sodium chloride diet from weaning. Acta Physiol. Scand., 171: 195-201.
    Direct Link    


  • De Angelis, P.R., V.R. Antunes, G.M. Camargo, W.A. Saad, A. Renzi and L.A.A. Camargo, 1966. Central interaction between atrial natriuretic peptide and angiotensin II in the control of sodium intake and excretion in female rats. Braz. J. Med. Biol. Res., 29: 1671-1674.


  • Sandor, P., M. Petty W. de Jong, M. Palkovits and D. de Wied, 1991. Hypothalamic blood flow autoregulation remains unaltered following surgical and pharmacological blockade of central vasopressin. Brain Res., 566: 212-218.
    CrossRef    Direct Link    


  • Sofroniew, N.V., 1980. Projections from vasopressin, oxytocin and neurophysin neurons to neural targets in the rat and human. J. Histochem. Cytochem., 28: 475-478.
    CrossRef    Direct Link    


  • Dorsa, D.M., L.A. Majundar, F.M. Petraca, D.G. Baskin and L.E. Cornett, 1988. Characterization and localization of 3H-arginine vasopressin binding to rat kidney and brain. Peptides, 4: 205-211.


  • Poulain, P., K. Lederis and Q.J. Pittman, 1988. Subcellular localization and characterization of vasopressin binding sites in the ventral septal area, lateral septum and hippocampus of the rat brain. J. Neurochem., 50: 889-898.


  • Ishisawa, H., B. Tabakoff, I.N. Mefford and P.L. Hoffman, 1990. Reduction of arginine vasopressin binding sites in mouse lateral septum by treatment with 6-hydroxydopamine. Brain Res., 507: 189-194.


  • Shewey, L.M., M.D. Brot, P. Szot and D.M. Dorsa, 1989. Enhanced phosphonositol hydrolysis in response to vasopressin in the septum of the homozygotous Brattleboro rat. Brain Res., 478: 95-102.


  • Shewey, L.M. and D.M. Dorsa, 1988. V1-type vasopressin receptors in the rat brain septum: Binding characteristics and effects on inositol phospholipd metabolism. J. Neurosci., 8: 1671-1677.


  • Noszczyk, B. and E. Szcepanska-Sadowska, 1993. Central cardiovascular effects of AVP and AVP analogs with V1, V2 and V3 agonistic or antagonistic properties in conscious dog. Brain Res., 610: 115-126.


  • Swank, M.W. and D.M. Dorsa, 1991. Chronic treatment with vasopressin analogues alters affinity of vasopressin in the septum and amygdala of the rat brain. Brain Res., 544: 342-344.
    Direct Link    


  • Reid, J.A., 1988. Actions of angiotensin II on the brain: Mechanisms and physiological role. Am. J. Physiol. Renal Physiol., 246: F533-F543.
    Direct Link    


  • Sadowska, E.S., J. Sobocineska and B. Sadowski, 1982. Central dipsogenic effect of vasopressin. Am. J. Physiol. Regul. Integr. Comp. Physiol., 242: 372-379.
    Direct Link    


  • Yang, C.R., M.I. Phillips and L.P. Renaud, 1982. Angiotensin II receptor activation depolarizes rat supraoptic neurons in vitro. Am. J. Physiol., 263: R1333-R1338.


  • Renaud, L.P., A.M. Allen, J.T. Cunningham, C.R. Jarvis and S.A. Johnson et al., 1992. Synaptic and neurotransmitter neurosecretory cells. Prog. Brain Res., 92: 277-288.


  • Yamamoto, M., L. Share and R.R. Shade, 1978. Effects of ventriculo-cisternal perfusion with angiotensin II and endomethacin on the plasma vasopressin concentration. Neuropharmacology, 25: 166-173.


  • Musabayane C.T., M.L. Forsling and R.J. Balment, 1997. Arginine vasopressin increases renal sodium excretion in the anesthetized rat through V1 receptors. Renal Failure, 1: 23-32.


  • Da Silva, R.K., W.A. Saad, A. Renzi, J.V. Menani and L.A.A. Camargo, 1995. Effects of lateral hypothalamus lesions on the water and salt intake and sodium and urine excretion induced by activation of the median preoptic nucleus in conscious rats. J. Autonomic Nervous Syst., 53: 195-204.


  • Sato, M.A., A.M. Sugawara, J.V. Menani and L.A. de Luca Jr., 1997. Idazoyan and the effect of intracerbroventricular oxytocin or vasopressin on sodium intake of sodium-depleted rats. Regul. Peptides, 69: 137-142.
    Direct Link    


  • Dudley, D.T., R.L. Panek, T.C. Major, G.H. Lu and R.F. Bruns et al., 1990. Subclasses of angiotensin II binding sites and their functional significance. Mol. Pharmacol., 38: 370-377.


  • Tastsumi, K.C., A. Stromberg, M. Viswanathan and J.M. Saavedra, 1991. Angiotensin-II receptor subtypes in fetal tissues of the rat: Autoradiography, guanine nucleotide sensitivity and association with phosphoinositide hydrolysis. Endocrinology, 129: 1075-1082.


  • Saad, W.A., L.I. Gutierrez, I.F.S.M. Guarda, L.A.A. Camargo and T.A.F. Santos et al., 2004. Influence of arginine vasopressin receptors and angiotensin receptor subtypes on the water and arterial pressure induced by vasopressin injected into the lateral septal area of the rat. Autonomic Neurosci: Basic Clin., 111: 66-70.
    Direct Link    


  • Tribollet, E., C. Barberis, S. Jard, M. Dubois-Dauphin and J.J. Dreifuss, 1988. Localization and pharmacological characterization of high affinity binding sites for vasopressin and oxytocin in the rat brain by light microscopic autoradiography. Brain Res., 442: 105-118.


  • Camargo, L.A.A., W.A. Saad, V.P. Villa, 2004. Interaction between paraventricular nucleus and medial septal area on the renal effects induced by adrenaline. Autonomic Neurosci: Basic Clin., 111: 135-139.


  • Johnson, A.K. and R.L. Thunhorst, 1997. The neuroendocrinology of thirst and salt appetite: Visceral sensory signals and mechanisms of central integration. Frontiers Neuroendocrinol., 18: 292-353.


  • Phillips, P.A., M. Bretherton, J. Risvanis, D. Casley, C. Johnston and L. Gray, 1993. Effects of drinking on thirst and vasopressin in dehydrated elderly men. Am. J. Physiol., 264: R877-R881.


  • Johnson, A.K., J. de Olmos, C.V. Pastuskovas, A.M. Zardetto-Smith and L. Vivas, 1999. The extended amygdala and salt appetite. Ann. N. Y. Acad. Sci., 877: 258-280.

  • © Science Alert. All Rights Reserved