HOME JOURNALS CONTACT

Journal of Biological Sciences

Year: 2005 | Volume: 5 | Issue: 1 | Page No.: 50-60
DOI: 10.3923/jbs.2005.50.60
Cell Cycle Regulation in Hematopoietic Stem/progenitor Cells
Hirokazu Tanaka, Itaru Matsumura and Yuzuru Kanakura

Abstract: Hematopoietic Stem Cells (HSCs) are characterized by two distinct abilities, that is, self-renewal ability and multipotency. To keep the homeostasis of hematopoiesis and protect the exhaustion of HSCs throughout the life, most of HSCs are kept quiescent and only a limited number of HSCs enter cell cycle to supply mature blood cells. Cell cycle state of HSCs is crucially regulated by external factors such as cytokines, Notch ligands and Wnt signals in the Bone Marrow (BM) microenvironment, so called hematopoietic niche. In addition, the intrinsic factors expressed in HSCs such as c-Myb, GATA-2, HOX family proteins and Bmi-1 also control their growth through the gene transcription. Cell cycle regulation in HSCs is not so unique but rather common to other cell types. However, the specific function of each cell cycle regulatory molecule in HSCs has been clarified during the last few years. Especially, p21WAF1 and p18INK4C keep the quiescence of HSCs and p27CIP1 keeps that of progenitor cells, respectively, thereby governing their pool sizes and/or preventing their exhaustion. On the other hand, the inactivation or deletion of p16INK4A and p15 INK4B genes is supposed to contribute to malignant transformation of hematopoietic cells. These results imply that appropriate cell cycle control at the stage of stem/progenitor cells in the BM is required for maintaining normal hematopoiesis.

Fulltext PDF

How to cite this article
Hirokazu Tanaka, Itaru Matsumura and Yuzuru Kanakura, 2005. Cell Cycle Regulation in Hematopoietic Stem/progenitor Cells. Journal of Biological Sciences, 5: 50-60.

Keywords: Hematopoietic

REFERENCES

  • Roberts, J.M., 1999. Evolving ideas about cyclins. Cell, 98: 129-132.


  • Morgan, D.O., 1995. Principles of CDK regulation. Nature, 374: 131-134.


  • Sherr, C.J. and J.M. Roberts, 1999. CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev., 13: 1501-1512.


  • Osawa, M., K. Hanada, H. Hamada and H. Nakauchi, 1996. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science, 273: 242-245.


  • Bertoncello, I., G.S. Hodgson, T.R. Bradley, 1985. Multiparameter analysis of transplantable hemopoietic stem cells, I: the separation and enrichment of stem cells homing to marrow and spleen on the basis of Rhodamine-123 fluorescence. Exp. Hematol., 13: 999-1006.


  • Wolf, N.S., A. Kone, G.V. Priestley and S.H. Bartelmez, 1993. In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst, 33342-rhodamine123 FACS selection. Exp. Hematol., 21: 614-622.


  • Goodell, M.A., K. Brose, G. Paradis, A.S. Conner and R.C. Mulligan, 1996. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med., 183: 1797-1806.
    Direct Link    


  • Zhou, S., J.D. Schuetz, K.D. Bunting, A.M. Colapietro, J. Sampath et al., 2001. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Med., 7: 1028-1034.


  • Uchida, N., F.Y.K. Leung and C.J. Eaves, 2002. Liver and marrow of adult mdr-1a/1b-/- mice show normal generation, function and multi-tissue trafficking of primitive hematopoietic cells. Exp. Hematol., 30: 862-869.


  • Zhou, S., J.J. Morris, Y. Barnes, L. Lan, J.D. Schuetz, B.P. Sorrentino, 2002. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice andconfers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc. Natl. Acad. Sci. USA., 99: 12339-12344.


  • Matsuzaki, Y., K. Kinjo, R.C. Mulligan and H. Okano, 2004. Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity, 20: 87-93.


  • Petzer, A.L., P.W. Zandstra, J.M. Piret and C.J. Eaves, 1996. Differential cytokine effects on primitive (CD34+CD38-) human hematopoietic cells: novel responses to Flt3-ligand and thrombopoietin. J. Exp. Med., 183: 2551-2558.


  • Sitnicka, E., N. Lin, G.V. Priestley, N. Fox, V.C. Broudy, N.S. Wolf and K. Kaushansky, 1996. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood, 87: 4998-5005.


  • Kitamura, Y., T. Kasugai, N. Arizono, H. Matsuda, 1993. Development of mast cells and basophils: Processes and regulation mechanisms. Am. J. Med. Sci., 306: 185-191.


  • Alexander, W.S., A.W. Roberts, N.A. Nicola, R. Li and D. Metcalf, 1996. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood, 87: 2162-2170.


  • Kimura, S., A.W. Roberts, D. Metcalf and W.S. Alexander, 1998. Hematopoietic stem cell deficiencies in mice lacking c-Mpl, the receptor for thrombopoietin. Proc. Natl. Acad. Sci. USA., 95: 1195-1200.


  • Ueda, T., K. Tsuji, H. Yoshino, Y. Ebihara and H. Yagasaki et al., 2000. Expansion of human NOD/SCID-repopulating cells by stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6 andsoluble IL-6 receptor. J. Clin. Invest., 105: 1013-1021.


  • Eaves, C.J., J.D. Cashman and R.J. Kay, 1991. Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. II. Analysis of positive and negative regulators produced by stromal cells within the adherent layer. Blood, 78: 110-117.


  • Nemunaitis, J., C.K. Tompkins, D.F. Andrews and J.W. Singer, 1991. Transforming growth factor beta expression in human marrow stromal cells. Eur. J. Hematol., 46: 140-145.


  • Moore, S.C., S.A. Theus and J.B. Barnett, 1992. Bone marrow natural suppressor cells inhibit the growth of myeloid progenitor cells and the synthesis of colony-stimulating factors. Exp. Hematol., 20: 1178-1183.


  • Hatzfeld, J., M.L. Li, E.L. Brown, H. Sookdeo and J.P. Levesque et al., 1991. Release of early human hematopoietic progenitors from quiescence by antisense transforming growth factor beta 1 or Rb oligonucleotides. J. Exp. Med., 174: 925-929.


  • Fan, X., G. Valdimarsdottir, J. Larsson, A. Brun, M. Magnusson and S.E. Jacobse et al., 2002. Transient disruption of autocrine TGF-beta signaling leads to enhanced survival and proliferation potential in single primitive human hemopoietic progenitor cells. J. Immunol., 168: 755-762.


  • Cardoso, A.A., M.L. Li, P. Batard, A. Hatzfeld and E.L. Brown et al., 1993. Release from quiescence of CD34+ CD38-human umbilical cord blood cells reveals their potentiality to engraft adults. Proc. Natl. Acad. Sci. USA., 90: 8707-8711.


  • Li, M.L, A.A. Cardoso, P. Sansilvestri, A. Hatzfeld, E.L. Brown et al., 1994. Additive effects of steel factor and antisense TGF-beta 1 oligodeoxynucleotide on CD34+ hematopoietic progenitor cells. Leukemia, 8: 441-445.


  • Fortunel, N., J. Hatzfeld, S. Kisselev, M.N. Monier and K. Ducos et al., 2000. Release from quiescence of primitive human hematopoietic stem/progenitor cells by blocking their cell-surface TGF-beta type II receptor in a short-term in vitro assay. Stem Cells, 18: 102-111.


  • Datto, M.B., Y. Li, J.F. Panus, D.J. Howe, Y. Xiong and X.F. Wang, 1995. Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc. Natl. Acad. Sci. USA., 92: 5545-5549.


  • Landesman, Y., F. Bringold, D.D. Milne and D.W. Meek, 1997. Modifications of p53 protein and accumulation of p21 and gadd45 mRNA in TGF-beta 1 growth inhibited cells. Cell Signal, 9: 291-298.


  • Miyazaki, M., R. Ohashi, T. Tsuji, K. Mihara, E. Gohda and M. Namba, 1998. Transforming growth factor-beta 1 stimulates or inhibits cell growth via down-or up-regulation of p21/Waf1. Biochem. Biophys. Res. Commun., 246: 873-880.


  • Li, C.Y., L. Suardet and J.B. Little, 1995. Potential role of WAF1/Cip1/p21 as a mediator of TGF-beta cytoinhibitory effect. J. Biol. Chem., 270: 4971-4974.


  • Elbendary, A., A. Berchuck, P. Davis, L. Havrilesky, R.C. Bast and J.D. Jr. Iglehart et al., 1994. Transforming growth factor beta 1 can induce CIP1/WAF1 expression independent of the p53 pathway in ovarian cancer cells. Cell Growth Differentiat., 5: 1301-1307.
    Direct Link    


  • Ducos, K., B. Pantern, N. Fortunel, A. Hatzfeld, M.N. Monier and J. Hatzfeld, 2000. p21(cip1) mRNA is controlled by endogenous transforming growth factor-beta1 in quiescent human hematopoietic stem/progenitor cells. J. Cell Physiol., 184: 80-85.


  • Fortunel, N.O., A. Hatzfeld and J.A. Hatzfeld, 2000. Transforming growth factor-beta: pleiotropic role in the regulation of hematopoiesis. Blood., 96: 2022-2036.


  • Cheng, T., H. Shen, N. Rodrigues, S. Stier and D.T. Scadden, 2001. Transforming growth factor beta 1 mediates cell-cycle arrest of primitive hematopoietic cells independent of p21(Cip1/Waf1) or p27(Kip1). Blood, 98: 3643-3649.


  • Hannon, G.J. and D. Beach, 1994. pl5INK4B is a potential effector of TGF-induced cell cycle arres. Nature, 371: 257-261.


  • Li, J.M., M.A. Nichols, S. Chandrasekharan, Y. Xiong and X.F. Wang, 1995. Transforming growth factor beta activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J. Biol. Chem., 270: 26750-26753.


  • Sansilvestri, P., A.A. Cardoso, P. Batard, B. Panterne, A. Hatzfeld and B. Lim et al., 1995. Early CD34high cells can be separated into KIThigh cells in which transforming growth factor-beta (TGF-beta) downmodulates c-kit and KITlow cells in which anti-TGF-beta upmodulates c-kit. Blood, 86: 1729-1735.


  • Batard, P., M.N. Monier, N. Fortunel, K. Ducos and P. Sansilvestri-Morel et al., 2000. TGF-(beta)1 maintains hematopoietic immaturity by a reversible negative control of cell cycle and induces CD34 antigen up-modulation. J. Cell Sci., 111: 1867-1875.


  • Bhatia, M., D. Bonnet, D. Wu, B. Murdoch, J. Wrana, L. Gallacher and J.E. Dick, 2001. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J. Exp. Med., 189: 1139-1148.


  • Zuckerman, K.S. and M.S. Wicha, 1983. Extracellular matrix production by the adherent cells of long-term murine bone marrow cultures. Blood, 61: 540-547.


  • Campbell, A., M.S. Wicha and M. Long, 1985. Extracellular matrix promotes the growth and differentiation of murine hematopoietic cells in vitro. J. Clin. Invest., 75: 2085-2090.


  • Long, M.W., R. Briddell, A.W. Walter, E. Bruno and R. Hoffman, 1992. Human hematopoietic stem cell adherence to cytokines and matrix molecules. J. Clin. Invest., 90: 251-255.


  • Adams, J.C. and F.M. Watt, 1993. Regulation of development and differentiation by the extracellular matrix. Development, 117: 1183-1198.


  • Long, M.W., 1992. Blood cell cytoadhesion molecules. Exp. Hematol., 20: 288-301.


  • Verfaillie, C., R. Hurley, R. Bhatia and J.B. McCarthy, 1994. Role of bone marrow matrix in normal and abnormal hematopoiesis. Crit. Rev. Oncol. Hematol., 16: 201-224.


  • Hynes, R.O., 1992. Integrins: Versatility, modulation andsignaling in cell adhesion. Cell, 69: 11-25.


  • Kopan, R., J. Lee, M.H. Lin, A.J. Syder and J. Kesterson et al., 2002. Genetic mosaic analysis indicates that the bulb region of coat hair follicles contains a resident population of several active multipotent epithelial lineage progenitors. Dev. Biol., 242: 44-57.


  • Marshman, E., C. Booth and C.S. Potten, 2002. The intestinal epithelial stem cell. Bioessays., 24: 91-98.


  • Nishimura, E.K., S.A. Jordan, H. Oshima, H. Yoshida and M. Osawa et al., 2002. Dominant role of the niche in melanocyte stem-cell fate determination. Nature, 416: 854-860.


  • Zhang, J., C. Niu, L. Ye, H. Huang and X. He et al., 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425: 836-841.
    CrossRef    Direct Link    


  • Calvi, L.M., G.B. Adams, K.W. Weibrecht, J.M. Weber and D.P. Olson et al., 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425: 841-846.
    CrossRef    Direct Link    


  • Yokota, T., K. Oritani, H. Mitsui, K. Aoyama and J. Ishikawa et al., 1998. Growth-supporting activities of fibronectin on hematopoietic stem/progenitor cells in vitro and in vivo: Structural requirement for fibronectin activities of CS1 and cell-binding domains. Blood, 91: 3263-3272.


  • Takakura, N., X.L. Huang, T. Naruse, I. Hamaguchi, D.J. Dumont, G.D. Yancopoulos and T. Suda, 1998. Critical role of the TIE2 endothelial cell receptor in the development of definitive hematopoiesis. Immunity, 9: 677-686.


  • Arai, F., A. Hirao, M. Ohmura, H. Sato and S. Matsuoka et al., 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 118: 149-161.


  • Varnum-Finney, B., L.E. Purton, M. Yu, C. Brashem-Stein, D. Flowers and S. Staats et al., 1998. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood, 91: 4084-4091.


  • Varnum-Finney, B., L. Xu, C. Brashem-Stein, C. Nourigat and D. Flowers et al., 2000. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nature Med., 6: 1278-1281.


  • Karanu, F.N., B. Murdoch, L. Gallacher, D.M. Wu, M. Koremoto and S. Sakano et al., 2000. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J. Exp. Med., 192: 1365-1372.


  • Karanu, F.N., B. Murdoch, T. Miyabayashi, M. Ohno, M. Koremoto, L. Gallacher et al., 2001. Human homologues of Delta-1 and Delta-4 function as mitogenic regulators of primitive human hematopoietic cells. Blood, 97: 1960-1967.


  • Ohishi, K., B. Varnum-Finney and I.D. Bernstein, 2002. Delta-1 enhances marrow and thymus repopulating ability of human CD34(+)CD38(-) cord blood cells. J. Clin. Invest., 110: 1165-1174.


  • Satoh, Y., I. Matsumura, H. Tanaka, S. Ezoe and H. Sugahara et al., 2004. Roles for c-Myc in self-renewal of hematopoietic stem cells. J. Biol. Chem., 279: 24986-24993.


  • Reya, T., M. O'Riordan, R. Okamura, E. Devaney, K. Willert, R. Nusse and R. Grosschedl, 2000. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity, 13: 15-24.


  • Ivanova, N.B., J.T. Dimos, C. Schaniel, J.A. Hackney, K.A. Moore and I.R. Lemischka, 2002. A stem cell molecular signature. Sciences, 298: 601-604.


  • Reya, T., A.W. Duncan and L. Allies, 2003. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423: 409-414.


  • Murdoch, B., K. Chadwick, M. Martin, F. Shojaei, K.V. Shah, L. Gallacher, R.T. Moon and M. Bhatia, 2003. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc. Natl. Acad. Sci. USA., 100: 3422-3427.


  • Murone, M., A. Rosenthal and F.J. de Sauvage, 1999. Hedgehog signal transduction: from flies to vertebrates. Exp. Cell Res., 253: 25-33.


  • Robbins, D.J., K.E. Nybakken, R. Kobayashi, J.C. Sisson, J.M. Bishop and P.P. Therond, 1997. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell, 90: 225-234.
    CrossRef    PubMed    Direct Link    


  • Bhardwaj, G., B. Murdoch and D. Wu, 2001. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Natre Immunol., 2: 178-180.
    Direct Link    


  • Melotti, P. and B. Calabretta, 1996. The transcription factors c-myb and GATA-2 act independently in the regulation of normal hematopoiesis. Proc. Natl. Acad. Sci. USA., 93: 5313-5318.


  • Schmidt, M., V. Nazarov, L. Stevens, R. Watson and L. Wolff, 2000. Regulation of the resident chromosomal copy of c-myc by c-Myb is involved in myeloid leukemogenesis. Mol. Cellular Biol., 20: 1970-1981.


  • Mucenski, M.L., K. McLain, A.B. Kier, S.H. Swerdlow, C.M. Schreiner and T.A. Miller et al., 1991. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell, 65: 677-689.


  • Tsai, F.Y., G. Keller, F.C. Kuo, M. Weiss, J. Chen, M. Rosenblatt, F.W. Alt and S.H. Orkin, 1994. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature, 371: 221-226.


  • Heyworth, C., K. Gale, M. Dexter, G. May and T. Enver, 1999. A GATA-2/estrogen receptor chimera functions as a ligand-dependent negative regulator of self-renewal. Genes Dev., 13: 1847-1860.


  • Ezoe, S., I. Matsumura, S. Nakata, K. Gale and K. Ishihara et al., 2002. GATA-2/estrogen receptor chimera regulates cytokine-dependent growth of hematopoietic cells through accumulation of p21(WAF1) and p27(Kip1) proteins. Blood, 100: 3512-3520.
    Direct Link    


  • Kitajima, K., M. Masuhara, T. Era, T. Enver and T. Nakano, 2002. GATA-2 and GATA-2/ER display opposing activities in the development and differentiation of blood progenitors. EMBO J., 21: 3060-3069.


  • Persons, D.A., J.A. Allay, E.R. Allay, R.A. Ashmun, D. Orlic and S.M. Jane, 1999. Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood, 93: 488-499.


  • Sauvageau, G., U. Thorsteinsdottir, C.J. Eaves, H.J. Lawrence, C. Largman, P.M. Lansdorp and R.K. Humphries, 1995. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev., 9: 1753-1765.


  • Antonchuk, J., G. Sauvageau and R.K. Humphries, 2002. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell, 109: 39-45.


  • Buske, C., M. Feuring-Buske, C. Abramovich, K. Spiekermann and C.J. Eaves et al., 2002. Deregulated expression of HOXB4 enhances the primitive growth activity of human hematopoietic cells. Blood, 100: 862-868.


  • Krosl, J., P. Austin, N. Beslu, E. Kroon, R.K. Humphries and G. Sauvageau, 2003. In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nature Med., 9: 1428-1432.


  • Bjornsson, J.M., N. Larsson, A.C. Brun, M. Magnusson, E. Andersson and P. Lundstrom et al., 2003. Reduced proliferative capacity of hematopoietic stem cells deficient in HOXB3 and HOXB4. Mol. Cellular Biol., 23: 3872-3883.


  • Mahmoudi, T. and C.P. Verrijzer, 2001. Chromatin silencing and activation by Polycomb and trithorax group proteins. Oncogene, 20: 3055-3066.


  • Park, I.K., D. Qian, M. Kiel, M.W. Becker and M. Pihalja et al., 2003. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 423: 302-305.


  • Jacobs, J.J., K. Kieboom, S. Marino, R.A. DePinho and M. van Lohuizen, 1999. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature, 397: 164-168.


  • Wohlschlegel, J.A., B.T. Dwyer, S.K. Dhar, C. Cvetic, J.C. Walterm and A. Dutta, 2000. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Sciences, 290: 2309-2312.


  • Tada, S., A. Li, D. Maiorano, M. Mechali, J.J. Blow, 2001. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nature Cell Biol., 3: 107-113.


  • Luo, L., X. Yang, Y. Takihara, H. Knoetgen and M. Kessel, 2004. The cell-cycle regulator geminin inhibits Hox function through direct and polycomb-mediated interactions. Nature, 427: 749-753.


  • Brugarolas, J., C. Chandrasekaran, J.I. Gordon, D. Beach, T. Jacks and G.J. Hannon, 1995. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature, 377: 552-557.


  • Deng, C., P. Zhang, J.W. Harper, S.J. Elledge and P. Leder, 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell, 82: 675-684.


  • Nakanishi, M., G.R. Adami, R.S. Robetorye, A. Noda, S.F. Venable and D. Dimitrov, 1995. Exit from G0 and entry into the cell cycle of cells expressing p21Sdi1 antisense RNA. Proc. Natl. Acad. Sci. USA., 92: 4352-4356.


  • Taniguchi, T., H. Endo, N. Chikatsu, K. Uchimaru and S. Asano et al., 1999. Expression of p21(Cip1/Waf1/Sdi1) and p27(Kip1) cyclin-dependent kinase inhibitors during human hematopoiesis. Blood, 93: 4167-4178.


  • Yaroslavskiy, B., S. Watkins, A.D. Donnenberg, T.J. Patton and R.A. Steinman, 1999. Subcellular and cell-cycle expression profiles of CDK-inhibitors in normal differentiating myeloid cells. Blood, 93: 2907-2917.


  • Cheng, T., N. Rodrigues, H. Shen, Y. Yang, D. Dombkowski, M. Sykes and D.T. Scadden, 2000. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Sciences, 287: 1804-1808.


  • Nakayama, K., N. Ishida, M. Shirane, A. Inomata and T. Inoue et al., 1996. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia andpituitary tumors. Cell, 85: 707-720.


  • Kiyokawa, H., R.D. Kineman, K.O. Manova-Todorova, V.C. Soares and E.S. Hoffman et al., 1996. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell, 85: 721-732.


  • Fero, M.L., M. Rivkin, M. Tasch, P. Porter and C.E. Carow et al., 1996. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis andfemale sterility in p27(Kip1)-deficient mice. Cell, 85: 733-744.


  • Cheng, T., N. Rodrigues, D. Dombkowski, S. Stier and D.T. Scadden, 2000. Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Natre Med., 6: 1235-1240.
    Direct Link    


  • Yuan, Y., H. Shen, D.S. Franklin, D.S., D.T. Scadden and T. Cheng, 2004. In vivo self-renewingdivisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nature Cell Biol., 6: 436-442.


  • Yuan, Y., H. Shen, D.S. Franklin, D.S., D.T. Scadden and T. Cheng, 2004. In vivo self-renewingdivisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nature Cell Biol., 6: 436-442.


  • Nakayama, K. and K. Nakayama, 1998. Cip/Kip cyclin-dependent kinase inhibitors: Brakes of the cell cycle engine during development. Bioessays, 20: 1020-1029.


  • Serrano, M., H.W. Lee, L. Chin, C. Cordon-Cardo, D. Beach and R.A. DePinho, 1996. Role of the INK4a locus in tumor suppression and cell mortality. Cell, 85: 27-37.
    CrossRef    


  • Teofili, L., S. Rutella, P. Chiusolo, E.O. La Barbera and C. Rumi et al., 1998. Expression of p15INK4B in normal hematopoiesis. Exp. Heamotol., 26: 1133-1139.


  • Serrano, M., A.W. Lin, M.E. McCurrach, D. Beach and S.W. Lowe, 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88: 593-602.


  • Malumbres, M., I. Perez-De-Castro, M.I. Hernandez, M. Jimenez, T. Corral and A. Pellicer, 2000. Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b). Mol. Cellular Biol., 20: 2915-2925.


  • Kamb, A., N.A.Gruis, J. Weaver-Feldhaus, Q. Liu and K. Harshman et al., 1994. A cell cycle regulator potentially involved in genesis of many tumor types. Science, 264: 436-440.
    PubMed    


  • Ruas, M. and G. Peters, 1998. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta, 11378: F115-F177.


  • Ogawa, S., A. Hangaishi, S. Miyawaki, S. Hirosawa and Y. Miura et al., 1995. Loss of the cyclin-dependent kinase 4-inhibitor (p16: MTS1) gene is frequent in and highly specific to lymphoid tumors in primary human hematopoietic malignancies. Blood, 86: 1548-1556.


  • Haidar, M.A., X.B. Cao, T. Manshouri, L.L. Chan and A. Glassman et al., 1995. p16INK4A and p15INK4B gene deletions in primary leukemias. Blood, 86: 311-315.


  • Gombart, A.F., R. Morosetti, C.W. Miller, J.W. Said and H.P. Koeffler, 1995. Deletions of the cyclin-dependent kinase inhibitor genes p16INK4A and p15INK4B in non-Hodgkin's lymphomas. Blood, 86: 1534-1539.


  • Hangaishi, A., S. Ogawa, N. Imamura, S. Miyawaki and Y. Miura et al., 1996. Inactivation of multiple tumor-suppressor genes involved in negative regulation of the cell cycle, MTS1/p16INK4A/CDKN2, MTS2/p15INK4B, p53 and Rb genes in primary lymphoid malignancies. Blood, 87: 4949-4958.


  • Uchida, T., T. Kinoshita, H. Nagai, Y. Nakahara, H. Saito, T. Hotta and T. Murate, 1997. Hypermethylation of the p15INK4B gene in myelodysplastic syndromes. Blood, 90: 1403-1409.


  • Nakauchi, H., K. Sudo and H. Ema, 2001. Quantitative assessment of the stem cell self-renewal capacity. Ann. N. Y. Acad. Sci., 938: 18-24.

  • © Science Alert. All Rights Reserved