HOME JOURNALS CONTACT

Journal of Biological Sciences

Year: 2005 | Volume: 5 | Issue: 3 | Page No.: 379-390
DOI: 10.3923/jbs.2005.379.390
Progress in the Modulation of the Polyamine Biosynthetic Pathway in Transgenic Rice
Teresa Capell and Ludovic Bassie

Abstract: Present study have focused on the polyamine biosynthetic pathway as a model to unravel those key factors that still present bottlenecks in metabolic pathway engineering in plants. By engineering rice plants with the oat adc cDNA under the control of two different promoters we demonstrated a correlation between polyamine accumulation and the ability of dedifferentiated tissue to undergo morphogenesis. We suggested also that a key element in facilitating changes in polyamine levels in transgenic tissues is the strength of the promoter used to drive expression of particular transgenes. Based on these results we developed a model, which stipulates a minimum threshold in putrescine concentration prior to its further conversion into the higher polyamines spermidine and spermine. Present experiments also demonstrated that seed rather than vegetative tissue is the preferred organ for polyamine accumulation and storage. Present studies shed further light on the complexity of polyamine biosynthesis in intact plants and tissues and provide a basis for their further manipulation using additional genes of the polyamine pathway.

Fulltext PDF

How to cite this article
Teresa Capell and Ludovic Bassie, 2005. Progress in the Modulation of the Polyamine Biosynthetic Pathway in Transgenic Rice. Journal of Biological Sciences, 5: 379-390.

Keywords: Arginine decarboxylase, direct DVA transfer, maize ubiqitin 1 promoter, Oryza sativa and polyamine

REFERENCES

  • Capell, T. and P. Christou, 2004. Progress in plant metabolic engineering. Curr. Opin. Biotechnol., 15: 148-154.


  • Capell, T., I. Claparols, S. Del Duca, B. Miro, J. Rodriguez-Montesinos, P. Christou and D. Serafini-Fracassini, 2004. Producing transglutaminases by molecular farming in plants. Amino Acids, 26: 419-423.


  • Stoger, E., M. Sack, R. Fischer and P. Christou, 2002. Plantibodies: applications, advantages and bottlenecks. Curr. Opin. Biotechnol., 13: 161-166.


  • Verpoorte, R., R. van der Heijden and J. Memelink, 2000. Engineering the plant cell factory for secondary metabolite production. Transgenic Res., 9: 323-343.
    CrossRef    Direct Link    


  • Christou, P. and R.M.Twyman, 2004. The potential of genetically enhanced plants to address food insecurity. Nutri. Res. Rev., 17: 23-42.


  • Bardocz, S., 1993. The role of dietary polyamines. Eur. J. Clin. Nutr., 47: 683-690.
    PubMed    


  • Bardocz, S., 1995. Polyamines in food and their consequences for food quality and human health. Trends Food Sci. Technol., 6: 341-346.
    CrossRef    


  • Bardocz, S., G. Grant, DS. Brown and A. Pusztai, 1998. Putrescine as a source of instant energy in the small intestine of the rat. Gut, 42: 24-28.
    Direct Link    


  • Smith, T.K., 1990. Effect of dietary putrescine on whole-body growth and polyamine metabolism. Proc. Soc. Exp. Biol. Med., 194: 332-336.


  • Grant, A.L., J.W. Thomas, K.J. King and J.S. Liesman, 1990. Effects of dietary amines on small intestinal variables in neonatal pigs fed soy protein isolate. J. Anim. Sci., 68: 363-371.


  • Sousadias, M.G. and T.K. Smith, 1995. Toxicity and growth-promoting potential of spermine when fed to chicks. J. Anim. Sci., 73: 2375-2381.
    PubMed    


  • Mogridge, J.L., TK. Smith and M.G. Sousadias, 1996. Effect of feeding raw soybeans on polyamine metabolism in chicks and the therapeutic effect of exogenous putrescine. J. Anim. Sci., 74: 1897-1904.
    Direct Link    


  • Greco, S., E. Niepceron, I. Hugueny, P. George, P. Louisot and M.C. Biol, 2001. Dietary spermidine and spermine participate in the maturation of galactosyltransferase activity and glycoprotein galactosylation in rat small intestine. J. Nutr., 131: 1890-1897.
    PubMed    


  • Walden, R.A. Cordeiro and AF. Tiburcio, 1997. Polyamines: Small molecules triggering pathways in plant growth and development. Plant Physiol., 113: 1009-1013.


  • Malmberg, RL., MB. Watson, GL. Galloway and W. Yu, 1998. Molecular genetic analyses of plant polyamines. Crit. Rev. Plant Sci., 17: 199-224.


  • Bouchereau, A., A. Aziz, F. Larher and J. Martin-Tanguy, 1999. Polyamines and environmental challenges: Recent development. Plant Sci., 140: 103-125.
    CrossRef    Direct Link    


  • Kumar, A., T. Altabella, M.A. Taylor and A.F. Tiburcio, 1997. Recent advances in polyamine research. Trends Plant Sci., 2: 124-130.
    Direct Link    


  • Kakkar, R.K. and V.K. Sawhney, 2002. Polyamine research in plants-a changing perspective. Physiol. Plant, 116: 281-292.
    Direct Link    


  • Capell, T., C. Escobar, H. Lui, D. Burtin, O. Lepri and P. Christou, 1998. Over-expression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) Affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor. Applied Genet., 97: 246-254.


  • Bano, S.M. and P. Christou, 1999. Multiple traits of agronomic importance in transgenic indica rice plants: analysis of transgene integration patterns, expression levels and stability. Mol. Breed., 5: 471-480.


  • Kohli, A., D. Gahakwa, P. Vain, D.A. Laurie and P. Christou, 1999. Transgene expression in rice engineered through particle bombardment: Molecular factors controlling stable expression and transgene silencing. Planta, 208: 88-97.


  • Tang, K., P. Tinjuangjun. Y. Xu, X. Sun and J.A. Gatehouse et al., 1999. Particle bombardment-mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap sucking insect pests. Planta, 208: 552-563.


  • Vain, P., B. Worland, M.C. Clarke, G. Richard and M. Beavis et al., 1998. Expression of an engineered cysteine proteinase inhibitor (Oryzacystatin-I-Δ86) for nematode resistance in transgenic rice plants. Theor. Applied Genet., 96: 266-271.


  • Kohli, A., M. Leech, P. Vain, D.A. Laurie and P. Christou, 1998. Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot-spots. Proc. Natl. Acad. Sci. USA., 95: 7203-7208.


  • Bassie, L., M. Noury, O. Lepri, T. Lahaye, P. Christou and T. Capell, 2000. Promoter strength influences polyamine metabolism and morphogenic capacity in transgenic rice tissues expressing the oat arginine decarboxylase cDNA constitutively. Transgenic Res., 9: 33-42.


  • Ye, X., S. Al-Babili, A. Klöti, J. Zhang, P. Lucca, P. Beyer and I. Potrykus, 2000. Engineering the provitamin A (β-Carotene) biosynthetic pathway into (Carotenoid-free) rice endosperm. Science, 287: 303-305.
    CrossRef    Direct Link    


  • Capell, T., L. Bassie and P. Christou, 2004. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc. Natl. Acad. Sci. USA., 101: 9909-9914.


  • Holmberg, N. and L. Bulow, 1998. Improving stress tolerance in plants by gene transfer. Trends Plant Sci., 3: 61-66.
    CrossRef    Direct Link    


  • Watson, M.B. and R.L. Malmberg, 1996. Regulation of Arabidopsis thaliana (L.) Heynh Arginine decarboxylase by potassium deficiency stress. Plant Physiol., 111: 1077-1083.


  • Flores, H.E. and A.W. Galston, 1984. Osmotic stress-induced polyamine accumulation in cereal leaves. I. Physiological parameters of the response. Plant Physiol., 75: 102-109.


  • Christensen, A.H. and P.H. Quail, 1996. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res., 5: 213-218.
    CrossRef    PubMed    Direct Link    


  • Cornejo, M., D. Luth, K.M. Blankenship, O.D. Anderson and A.E. Blechl, 1993. Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol. Biol., 23: 567-581.
    CrossRef    Direct Link    


  • Takimoto, I., A.H. Christensen, P.H. Quail, H. Uchimiya and S. Toki, 1994. Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants. Plant Mol. Biol., 26: 1007-1012.


  • Capell, T., J.L. Campos and A.F. Tiburcio, 1993. Antisenescence properties of guazatine in osmotically stressed oat leaves. Phytochemistry, 32: 785-788.


  • Li, Z.Y. and S.Y. Chen, 2000. Isolation and characterization of a salt- and drought- inducible gene for S-adenosylmethionine decarboxylase from wheat (Triticum aestivum L). J. Plant Physiol., 156: 386-393.


  • Mo, H. and E.C. Pua, 2002. Up-regulation of arginine decarboxylase gene expression and accumulation of polyamines in mustard (Brassica juncea) in response to stress. Physiol. Plant, 114: 439-449.
    CrossRef    PubMed    Direct Link    


  • Malmberg, R.L., K.E. Smith, E. Bell and M.L. Cellino, 1992. Arginine decarboxylase of oats is clipped from a precursor into two polypeptides found in the soluble enzyme. Plant Physiol., 100: 146-152.


  • Malmberg, R.L. and M.L. Cellino, 1994. Arginine decarboxylase of oats is activated by enzymatic cleavage into two polypeptides. J. Biol. Chem., 269: 2703-2706.


  • Galston, A.W., R. Kaur-Sawhney, T. Altabella and AF. Tiburcio, 1997. Plant polyamines in reproductive activity and response to abiotic stress. Bot. Acta, 110: 197-207.


  • Watson, M.W., W. Yu, G.L. Galloway and R.L. Malmberg, 1997. Isolation and characterisation of a second arginine decarboxylase cDNA from Arabidopsis. Plant Physiol., 114: 1569-1569.


  • Oono, Y., M. Seki, T. Nanjo, M. Narusaka and M. Fujita et al., 2003. Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J., 34: 868-887.


  • DeScenzo, RA. and SC. Minocha, 1993. Modulation of cellular polyamines in tobacco by transfer and expression of mouse ornithine decarboxylase cDNA. Plant Mol. Biol., 22: 113-127.


  • Hamill, J.D., R.J. Robins, A.J. Parr, D.M. Evans, J.M. Furze and M.J.C. Rhodes, 1990. Overexpressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation. Plant Mol. Biol., 15: 27-38.


  • Noury, M., L. Bassie, O. Lepri, I. Kurek, P. Christou and T. Capell, 2000. A transgenic rice cell lineage expressing the oat arginine decarboxylase (adc) cDNA constitutively accumulates putrescine in callus and seeds but not in vegetative tissues. Plant Mol. Biol., 43: 537-544.


  • Burtin, D. and T. Michael, 1997. Over-expression of arginine decarboxylase in transgenic plants. Biochem J., 325: 331-337.


  • Masgrau, C., T. Altabella, R. Farras, D. Flores, A.J. Thompson, R.T. Besford and A.F. Tiburcio, 1997. Inducible overexpression of oat arginine decarboxylase in transgenic tobacco plants. Plant J., 11: 465-473.


  • Stoger, E., S. Williams, D. Keen and P. Christou, 1999. Constitutive versus seed specific expression in transgenic wheat: Temporal and spatial control. Transgenic Res., 8: 73-82.


  • Bassie, L., M. Noury, J.P. Wisniewski, L. Topsom, P. Christou and T. Capell, 2000. Transgenic cell lines as a useful tool to study the biochemistry of down-regulation of an endogenous rice gene using a heterologous diamine oxidase cDNA. Plant Physiol. Biochem., 38: 729-737.


  • Thu-Hang, P., L. Bassie, G. Safwat, P. Trung-Nghia, P. Christou and T. Capell, 2002. Expression of a heterologous S-Adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-L-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine. Plant Physiol., 129: 1744-1754.


  • Noh, E.W. and S.C. Minocha, 1994. Expression of a human S-adenosylmethionine decarboxylase cDNA in transgenic tobacco and its effects on polyamine biosynthesis. Transgenic Res., 3: 25-53.


  • Rafart-Pedros, A., M.R. MacLeod, H.A. Ross, D. McRae, A.F. Tiburcio, H.V. Davies and M.A. Taylor, 1999. Manipulation of S-adenosylmethionine decarboxylase activity in potato tubers. Planta, 209: 153-160.


  • Hamasaki-Katagiri, N., Y. Katagiri, C.W. Tabor and H. Tabor, 1998. Spermine is not essential for growth of Saccharomyces cerevisiae: Identification of the SPE4 gene (spermine synthase) and characterization of a spe4 deletion mutant. Gene, 210: 195-201.


  • Lepri, O., L. Bassie, G. Safwat, P. Thu-Hang, P. Trung-Nghia, E. Holtta, P. Christou and T. Capell, 2001. Over-expression of a cDNA for human ornithine decarboxylase in transgenic rice plants alters the polyamine pool in a tissue-specific manner. Mol. Genet. Genom., 266: 303-312.


  • Trung-Nghia, P., L. Bassie, G. Safwat, O. Lepri, P. Thu-Hang, P. Rocha, P. Christou and T. Capell, 2003. Reduction in the endogenous arginine decarboxylase transcript levels in rice leads to depletion of the putrescine and spermidine pools with no concomitant changes in the expression of downstream genes in the polyamine biosynthetic pathway. Planta, 218: 125-134.


  • Torres, E., P. Gonzales-Melendi, E. Stoger, P. Shaw and R.M. Twyman et al., 2001. Native and artificial reticuloplasmins co-accumulate in distinct domains of the endoplasmic reticulum (ER) and in post-ER vesicles. Plant Physiol., 127: 1212-1223.


  • Stoger, E., C. Vaquero, E. Torres, M. Sack and L. Nicholson et al., 2000. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol. Biol., 42: 583-590.


  • Perrin, Y., C. Vaquero, I. Gerrad, M. Sack and J. Drossard et al., 2000. Transgenic pea seeds as biorreactors for the production of a single-chain Fv fragment (scFV) antibody used in cancer diagnosis and therapy. Mol. Breed., 6: 345-352.


  • Stoger, E., M. Parker, P. Christou and R. Casey, 2001. Pea legumin over-expressed in wheat endosperm assembles into an ordered paracrystaline matrix. Plant Physiol., 125: 1732-1742.


  • Hiatt, A.C., J. McIndoo and R. Malmberg, 1986. Regulation of polyamine biosynthesis in tobacco. Effects of inhibitors and exogenous polyamines on arginine decarboxylase, ornithine decarboxylase and S-adenosylmethionine decarboxylase. J. Biol. Chem., 261: 1293-1298.


  • Kameji, T. and A.E. Pegg, 1987. Inhibition of translation of mRNAs for ornithine decarboxylase and S-adenosylmethionine decarboxylase by polyamines. J. Biol. Chem., 262: 2427-2430.


  • Persson, L., J.E. Seely and A.E. Pegg, 1984. Investigation of structure and rate of synthesis of ornithine decarboxylase protein in mouse kidney. Biochemistry, 23: 3777-3783.


  • Murakami, Y., K. Fujita, T. Kameji and S. Hayashi, 1985. Accumulation of ornithine decarboxylase- antizyme complex in HMOA cells. Biochem. J., 225: 669-697.


  • Holtta, E. and P. Pohjanpelto, 1986. Control of ornithine decarboxylase in chinese hamster ovary cells by polyamines. Translational inhibition of synthesis and acceleration of degradation of the enzyme by putrescine, spermidine and spermine. J. Biol. Chem., 261: 9502-9508.


  • Tiburcio, A.F., R. Kaur-Sawhney and A.W. Galston, 1990. Polyamine Metabolism. In: Intermediatory Nitrogen Metabolism, Miflin, B. and P.J. Lea (Eds.). Academic Press, New York, pp: 283-325


  • Kumar, A. and S.C. Minocha, 1998. Transgenic Manipulation of Polyamine Metabolism. In: Transgenic Plant Research, Lindsey, K. (Ed.). Harwood Academic, London, pp: 187-199


  • Slocum, R.D. and L.H. Weinstein, 1990. Polyamines and Ethylene: Biochemistry and Interactions. American Society of Plant, USA., pp: 157-165


  • Di Tomaso, J., J. Shaff and L. Kochian, 1989. Putrescine-induced wounding and its effects on membrane integrity and ion transport processes in roots of intact corn seedlings. Plant Physiol., 90: 988-995.
    Direct Link    


  • Bohnert, H.J. and R.G. Jensen, 1996. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol., 14: 89-97.
    CrossRef    Direct Link    

  • © Science Alert. All Rights Reserved