HOME JOURNALS CONTACT

Journal of Biological Sciences

Year: 2001 | Volume: 1 | Issue: 10 | Page No.: 993-997
DOI: 10.3923/jbs.2001.993.997
Microbial Activity on the Degradation of Lignocellulosic Polysaccharides
Zakaria Ahmed, Hasina Banu, M. Motiur Rahman, Firaza Akhter and M. Shamsul Haque

Abstract: In present world there is an increase in demand for organic waste disposal to minimize pollution and maximize resource recovery. Several workers from various parts of the world have reported successful conversion of waste materials to useful compost. Lignocellulose comprises three different polymer types: lignin, hemicellulose and cellulose. Bioconversion of lignocellulosic material through microbial enzyme to produce fermentable sugars has been given serious consideration and continuous research and development activities has been carried out in laboratories around the world. This article highlights the significant research findings and reviews the state of the art in this very important area of biotechnology.

Fulltext PDF

How to cite this article
Zakaria Ahmed, Hasina Banu, M. Motiur Rahman, Firaza Akhter and M. Shamsul Haque, 2001. Microbial Activity on the Degradation of Lignocellulosic Polysaccharides. Journal of Biological Sciences, 1: 993-997.

Keywords: Polysaccharides, cellulose, hemicellulose and lignin

REFERENCES

  • Bok, J.D., D.A. Yernool and D.E. Eveleigh, 1998. Purification, characterization and molecular analysis of thermostable cellulases celA and celB from Thermotoga neapolitana. Applied Environ. Microbiol., 64: 4774-4781.
    Direct Link    


  • Kirk, T.K. and R.L. Farrell, 1987. Enzymatic combustion: The microbial degradation of lignin. Annu. Rev. Microbiol., 41: 465-505.
    CrossRef    


  • Laurent, P., L. Buchon, J.F. Guespin-Michel and N. Orange, 2000. Production of pectate lyases and cellulases by Chryseomonas luteola strain MFCL0 depends on the growth temperature and the nature of the culture medium: Evidence for two critical temperatures. Applied Environ. Microbiol., 66: 1538-1543.
    Direct Link    


  • Nogawa, M., K. Yatsui, A. Tomioka, H. Okada and Y. Morikawa, 1999. An alpha L Arabinofuranosidase from Trichoderma reesei containing a Noncatalytic Xylan-binding domain. Applied Environ. Microbiol., 65: 3964-3968.


  • Reese, E.T., R.G.H. Siu and H.S. Levinson, 1950. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol., 59: 485-497.


  • Meevootisom, V., T.W. Flegel, T. Glinsukon, N. Sobhon and S. Kiatrapan, 1984. Screening for and isolation of lignocellulolytic fungi from Thailand for animal feed production. J. Sci. Soc. Thailand, 10: 147-178.


  • Moracci, M., B.C. Ponzano, A. Trincone, S. Fusco and M. De Rosa et al., 2000. Identification and molecular characterization of the first alpha -xylosidase from an archaeon. J. Biol. Chem., 275: 22082-22089.


  • Srinivasan, M.C., 1992. Lignocellulose Biotechnology: Recent Advances and Technology Prospects. In: New Trands in Biotechnology, Subba, R.N.S., C. Balagopalan and S.V. Ramakrishna (Eds.). Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, India, pp: 315-320


  • Sen, S., T.K. Abraham and S.L. Chakrabarty, 1981. Cellulolytic activity of Myceliophthora thermophila D-14. Curr. Sci., 50: 598-600.


  • Volff, J.N. and J. Altenbuchner, 2000. The 1-kb-repeat-encoded DNA-binding protein as repressor of an {alpha}-glucosidase operon flanking the amplifiable sequence AUD1 of Streptomyces lividans. Microbiology, 146: 923-933.


  • Wood, T.M. and S.L. McCare, 1972. The purification and properties of the C1 component of Trichoderma koningii cellulase. Biochem. J., 128: 1183-1192.


  • Yadav, J.S., P.P. Reddy and S. Neelakantan, 1988. Lignolytic activity of fungi on wheat straw-lignin. Ind. J. Microbiol., 28: 133-135.


  • Zadrazil, F., 1980. Conversion of different plant waste into feed by basidiomycetes. Eur. J. Applied Microbiol. Biotechnol., 9: 243-248.
    CrossRef    Direct Link    


  • Zadrazil, F., 1985. Screening of fungi for lignin: Decomposition and conversion of straw into feed. Angewandte Botanik. 59: 433-452.


  • Berghem, L.E.R. and L.G. Petterson, 1983. The mechanism of enzymatic cellulose degradation, purification of cellulolytic enzymes from Trichoderma viride active on highly ordered cellulose. Eur. J. Biochem., 37: 21-30.


  • Stratmann, A., T. Mahmud, S. Lee, J. Distler, H.G. Floss and W. Piepersberg, 1999. The Acbc protein from actinoplanes species is a c7-cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the alpha -glucosidase inhibitor acarbose. J. Biol. Chem., 274: 10889-10896.


  • Chahal, D.S. and D.L. Hawksworth, 1976. Chaetomium cellulolyticum a new thermotolerant and Cellulolytic chaetomium. 1. Isolation, description and growth rate. Mycologia, 68: 600-610.


  • Coutts, A.D. and R.E. Smith, 1976. Factors influencing production of cellulases by Sporotrichum thermophilie. Applied Environ. Microbiol., 31: 819-825.


  • Chidthaisong, A., B. Rosenstock, R. Conrad, 1999. Measurement of monosaccharides and conversion of glucose to acetate in anoxic rice field soil. Applied Environ. Microbiol., 65: 2350-2355.


  • Espinosa, J.C., J.A. Tercero, M.A. Rubio, A. Jimenez, 1999. The pure gene from the puromycin biosynthetic pure cluster of Streptomyces alboniger Encodes a Nudix Hydrolase. J. Bacteriol., 181: 4914-4918.


  • Fernandez, E., U. Weibach, C.S. Reillo, A.F. Brana, C. Mendez, J. Rohr and J.A. Salas, 1998. Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. J. Bacteriol., 180: 4929-4937.


  • Fuglsang, C.C., R.M. Berka, J.A. Wahleithner, S. Kauppinen and J.R. Shuster et al., 2000. Biochemical analysis of recombinant fungal mutanases. A new family of alpha 1,3-glucanases with novel carbohydrate binding domains. J. Biol. Chem., 275: 2009-2018.


  • Glazer, A.N. and H. Nikaido, 1995. Biomass. In: Microbial Biotechnology, Freeman, W.H. (Ed.). Freeman, New York, USA., pp: 327-358


  • Gold, M.H. and M. Alic, 1993. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol. Rev., 57: 605-622.


  • Hicks, K.B., Jr. A.T. Hotchkiss, K. Sasaki, P.L. Irwin, L.W. Doner, G. Nagahashi and R.M. Haines, 1994. Analytical and preparative HPLC of carbohydrates: Inositols and oligosaccharides derived from cellulose and pectin. Carbohydrate Polymers, 25: 305-313.


  • Ichi-Ishi, A., S. Sheweita and R.H. Doi, 1998. Characterization of Eng from Clostridium cellulovorans and identification of a novel cellulose binding domain. Applied Environ. Microbiol., 64: 1086-1090.


  • Liu, S.Y. and J.P.N. Rosazza, 1998. Enzymatic conversion of glucose to UDP-4-Keto-6-Deoxyglucose in Streptomyces sp. Applied Environ. Microbiol., 64: 3972-3976.

  • © Science Alert. All Rights Reserved