HOME JOURNALS CONTACT

Journal of Applied Sciences

Year: 2008 | Volume: 8 | Issue: 8 | Page No.: 1560-1565
DOI: 10.3923/jas.2008.1560.1565
2D Model for Diffusion of Oxygen with Biochemical Reaction During Biofilm Formation Process in Static Aqueous Medium
Y. T. Puyate and A. Rim-Rukeh

Abstract: A 2D model that describes diffusion of oxygen with biochemical reaction during biofilm formation process in static aqueous medium is presented. The analysis is based on X60 steel placed at the bottom of a container containing produced water inoculated with Leptothrix discophora (iron-oxidizing bacteria). These bacteria form biofilms on the exposed surfaces of the metal. The biofilm-microorganisms absorb oxygen from the produced water through biochemical reaction, resulting in transfer of oxygen from the bulk liquid phase to the biofilm. Predictions of the model are compared with experimental data and good agreement is obtained.

Fulltext PDF Fulltext HTML

How to cite this article
Y. T. Puyate and A. Rim-Rukeh, 2008. 2D Model for Diffusion of Oxygen with Biochemical Reaction During Biofilm Formation Process in Static Aqueous Medium. Journal of Applied Sciences, 8: 1560-1565.

Keywords: biocorrosion, oxygen, diffusion-reaction, modeling, Biofilm and microbes

Department of Integrated Science, College of Education, P.M.B. 2090, Agbor, Delta State, Nigeria

REFERENCES

  • Booth, G.H., 1971. Microbiological Corrosion. Mills and Boon Ltd., London


  • Bryers, J.D. and W.G. Characklis, 1982. Processes governing primary biofilm formation. Biotechnol. Bioeng., 24: 2451-2476.
    CrossRef    Direct Link    


  • Characklis, W.G. and K.E. Cooksey, 1983. Biofilms and microbial fouling. Adv. Applied Microbiol., 29: 93-138.
    CrossRef    Direct Link    


  • Characklis, W.G. and K.C. Marshall, 1990. Biofilms. John Wiley and Sons, New York


  • Chen, C.B. and H.V. Kojouharov, 2000. Modeling of subsurface biobarriers formation. Proceedings of the 2000 Conference on Hazardous Waste Research Kingston, Canada.


  • Chen, G., C.R. Clayton, R.A. Sadowski, R.A. Kearns, J.B. Gillow and A.J. Francis, 1995. Influence of sulphate-reducing bacteria on the passive film formed on austenitic stainless steel Aisi 304. Corrosion/95. Paper No. 217, NACE, Houston, TX.


  • Costerton, J.W., Z. Lewandowski, D.E. Caldwell, D.R. Korber and H.M. Lappin-Scott, 1995. Microbial biofilms. Ann. Rev. Microbiol., 49: 711-745.
    CrossRef    Direct Link    


  • Coulson, J.M. and J.F. Richardson, 1977. Chemical Engineering. 3rd Edn., Pergamon Press, Oxford


  • Henze, W., W. Gujer, T. Mino, T. Matsuo, M.C. Wentzel, G.R. Marrais and M.C.M. van Loosdrecht, 1999. Bacteria and metal corrosion: A modeling approach. Water Sci. Technol., 39: 118-124.


  • Jones, D.A. and P.S. Amy, 2002. A thermodynamic interpretation of microbiologically influenced corrosion. Corrosion, 58: 638-648.
    CrossRef    Direct Link    


  • Kinoshita, K., 1992. Electrochemical Oxygen Technology. John Wiley and Sons, New York


  • Kwok, W.K., C. Picioreanu, L.S. Ong and M.C.M. Van Loosdrecht, 1998. Reactions in an heterogenous biofilm. Biotechnol. Bioeng., 58: 400-408.


  • Monod, J., 1949. Bacteria growth kinetics. Ann. Rev. Microbiol., 3: 371-377.


  • Picioreanu, C. and M.C.M. van Loosdrecht, 2002. A mathematical model for initiation of microbiologically influenced corrosion by differential aeration. J. Electrochem. Soc., 149: B211-B233.
    CrossRef    Direct Link    


  • Pritchard, A.M., 2002. Biocorrosion risk assessment. A Paper Presented at European Summer School on Biologically Influence Corrosion. University of Portsmouth, UK


  • Puyate, Y.T. and C.J. Lawrence, 1999. Effect of solute parameters on wick action in concrete. Chem. Eng. Sci., 54: 4257-4265.
    CrossRef    Direct Link    


  • Puyate, Y.T. and C.J. Lawrence, 2006. Sherwood's models for the falling-rate period: A missing link at moderate drying intensity. Chem. Eng. Sci., 61: 7177-7183.
    CrossRef    Direct Link    


  • Rim-Rukeh, A. and Y.T. Puyate, 2007. Corrosion of X60 steel influenced by iron oxidizing bacteria (Leptothrix descophora). Global J. Eng. Res., 6: 51-56.
    CrossRef    Direct Link    


  • Rittman, B.E. and P.L. McCarty, 1980. Model of steady-state-biofilm kinetics. Biotechnol. Bioeng., 22: 2243-2357.
    CrossRef    Direct Link    


  • Stickler, J.G., 1999. Pitting of galvanized steel in a cooling tower basin. Mat. Performance, 20: 43-44.


  • Stoodley, P., S. Wilson, L. Hall-Stoodley, J.D. Boyle, H.M. Lappin-Scot and J.W. Costerton, 2001. Growth and detachment of cell clusters from mature mixed-species biofilms. Applied Environ. Microbiol., 67: 5608-5613.
    CrossRef    Direct Link    


  • Videla, H.A., 1996. Manual of Biocorrosion. CRC Lewis Publishers, Florida


  • Wanner, O. and P. Reichert, 1996. Mathematical modeling of mixed-culture biofilms. Biotechnol. Bioeng., 49: 172-184.
    CrossRef    Direct Link    


  • Welty, J.R., C.E. Wicks and R.E. Wilson, 1984. Fundamentals of Momentum, Heat and Mass Transfer. 3rd Edn., John Wiley and Sons, New York


  • De Gooijer, C.D., R.H. Wijffels and J. Tramper, 1991. Growth and substrate consumption of Nitrobacter agilis cells immobilized in carrageenan: Part 1. Dynamic modeling. Biotechnol. Bioeng., 38: 224-240.
    CrossRef    Direct Link    

  • © Science Alert. All Rights Reserved