HOME JOURNALS CONTACT

International Journal of Poultry Science

Year: 2015 | Volume: 14 | Issue: 6 | Page No.: 305-311
DOI: 10.3923/ijps.2015.305.311
In vitro Prebiotic Bacterial Growth Properties of Xylooligosaccharides Produced by Autohydrolysis of Corn Fiber
Aditya Samala, Radhakrishnan Srinivasan, John P. Brooks and Chander S. Sharma

Abstract: Xylooligosaccharides (XOS) are considered to be prebiotics. Prebiotics are defined as the non-digestible food ingredients that benefit the host by stimulating the growth and activity of a limited number of bacteria, such as the Bifidobacterium genus, in the intestine. The objective of this study was to evaluate prebiotic properties for XOS produced by autohydrolysis of corn fiber. We compared commercial XOS (XOS-C), fructo-oligosaccharides (FOS), inulin, monosugars (xylose and glucose) and control (no sugars), with auothydrolysis liquor containing XOS (XOS-D) for the growth of Bifidobacterium breve, B. adolescentis and Lactobacillus brevis. Optical density at 550 nm (OD550) was normalized by taking logarithm of ratio of OD on particular day to OD on day 0, for each organism/substrate/media combination. Normalized optical density is referred to as specific growth. Growth on commercial XOS (XOS-C) was comparable with growth on other prebiotics (FOS and inulin). XOS-D promoted growth more than that of the control. For XOS-D, highest growth recorded was for L. brevis (0.461) followed by B. breve (0.267) and B. adolescentis (0.263). XOS-D performance was comparable to FOS and inulin for L. brevis. XOS produced from corn fiber exhibit the potential to be used as a prebiotic in poultry.

Fulltext PDF

How to cite this article
Aditya Samala, Radhakrishnan Srinivasan, John P. Brooks and Chander S. Sharma, 2015. In vitro Prebiotic Bacterial Growth Properties of Xylooligosaccharides Produced by Autohydrolysis of Corn Fiber. International Journal of Poultry Science, 14: 305-311.

Keywords: Prebiotics, corn fiber, bioproducts, xylooligosaccharides and XOS

REFERENCES

  • Carvalheiro, F., M.P. Esteves, J.C. Parajo, H. Pereira and F.M. Gırio, 2004. Production of oligosaccharides by autohydrolysis of brewery's spent grain. Bioresour. Technol., 91: 93-100.
    CrossRef    Direct Link    


  • Courtin, C.M., K. Swennen, W.F. Broekaert, Q. Swennen and J. Buyse et al., 2008. Effects of dietary inclusion of xylooligo-saccharides, arabinoxylooligosaccha-rides and soluble arabinoxylan on the microbial composition of caecal contents of chickens. J. Sci. Food Agric., 88: 2517-2522.
    CrossRef    Direct Link    


  • Crittenden, R., S. Karppinen, S. Ojanen, M. Tenkanen and R. Fagerstrom et al., 2002. In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. J. Sci. Food Agric., 82: 781-789.
    CrossRef    Direct Link    


  • Dunlop, A.P., 1948. Furfural formation and behavior. Ind. Eng. Chem., 40: 204-209.
    CrossRef    Direct Link    


  • Ebringerova, A. and T. Heinze, 2000. Xylan and xylan derivatives-biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol. Rapid Commun., 21: 542-556.
    CrossRef    Direct Link    


  • Garde, A., G. Jonsson, A.S. Schmidt and B.K. Ahring, 2002. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Bioresour. Technol., 81: 217-223.
    CrossRef    Direct Link    


  • Gibson, G.R. and M.B. Roberfroid, 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr., 125: 1401-1412.
    CrossRef    PubMed    Direct Link    


  • Heredia, A., A. Jimenez and R. Guillen, 1995. Composition of plant cell walls. Zeitschrift Lebensmittel-Untersuchung Forschung, 200: 24-31.
    CrossRef    Direct Link    


  • Holzapfel, W.H. and U. Schillinger, 2002. Introduction to pre- and probiotics. Food Res. Int., 35: 109-116.
    CrossRef    Direct Link    


  • Jaskari, J., P. Konbula, A. Siitonen, H. Jousimes-Somen, T. Matilla-Sandholm and K. Poutamen, 1998. Oat β-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains. Applied Microbial. Biotechnol., 49: 175-181.
    CrossRef    Direct Link    


  • Jin, L.Z., Y.W. Ho, N. Abdullah and S. Jalaludin, 1998. Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Lett. Applied Microbiol., 27: 183-185.
    CrossRef    Direct Link    


  • Kizerwetter-Swida, M. and M. Binek, 2005. Selection of potentially probiotic Lactobacillus strains towards their inhibitory activity against poultry enteropathogenic bacteria. Polish J. Microbiol., 54: 287-294.
    PubMed    Direct Link    


  • Kontula, P., M.L. Suihko, T. Suortti, M. Tenkanen, T. Mattila-Sandholm and A. von Wright, 2000. The isolation of lactic acid bacteria from human colonic biopsies after enrichment on lactose derivatives and rye arabinoxylo-oligosaccharides. Food Microbiol., 17: 13-22.
    CrossRef    Direct Link    


  • Moura, P., R. Barata, F. Carvalheiro, F. Girio, M.C. Loureiro-Dias and M.P. Esteves, 2007. In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT-Food Sci. Technol., 40: 963-972.
    CrossRef    Direct Link    


  • Nakakuki, T., 1993. Oligosaccharides: Production, Properties and Applications. Gordon and Breach Science Publishers, Switzerland, ISBN-13: 9782881248900, Pages: 235


  • Noohi, N., G. Ebrahimipour, M. Rohani, M. Talebi and M.R. Pourshafie, 2014. Phenotypic characteristics and probiotic potentials of Lactobacillus spp. isolated from poultry. Jundishapur J. Microbiol., Vol. 7.
    CrossRef    


  • Patterson, J.A., J.I. Orban, A.L. Sutton and G.N. Richards, 1997. Selective enrichment of bifidobacteria in the intestinal tract of broilers by thermally produced kestoses and effect on broiler performance. Poult. Sci., 76: 497-500.
    CrossRef    Direct Link    


  • Samala, A., R. Srinivasan, M.P. Yadav, T.J. Kim and L. Prewitt, 2012. Xylo-oligosaccharides production by autohydrolysis of corn fiber separated from DDGS. BioResources, 7: 3038-3050.
    Direct Link    


  • Schadel, C., A. Blochl, A. Richter and G. Hoch, 2010. Quantification and monosaccharide composition of hemicelluloses from different plant functional types. Plant Physiol. Biochem., 48: 1-8.
    CrossRef    Direct Link    


  • GOS., 1997. Antimicrobial feed additives. Swedish Government Official Report, SOU 1997:132, Ministry of Enterprise and Innovation, Government Offices of Sweden.


  • Srinivasan, R., F. To and E. Columbus, 2009. Pilot scale fiber separation from Distillers Dried Grains with Solubles (DDGS) using sieving and air classification. Bioresour. Technol., 100: 3548-3555.
    CrossRef    Direct Link    


  • Ulbricht, R.J., S.J. Northup and J.A. Thomas, 1984. A review of 5-hydroxymethylfurfural (HMF) in parenteral solutions. Toxicol. Sci., 4: 843-853.
    CrossRef    Direct Link    


  • Walter, J., R.A. Britton and S. Roos, 2011. Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc. Natl. Acad. Sci. USA., 108: 4645-4652.
    CrossRef    PubMed    Direct Link    


  • Wang, J., B. Sun, Y. Cao and C. Wang, 2010. In vitro fermentation of xylooligosaccharides from wheat bran insoluble dietary fiber by Bifidobacteria. Carbohydr. Polym., 82: 419-423.
    CrossRef    Direct Link    


  • Yong, X., G. Yang, C. Mei and X. Shi-Yuan, 2005. Effects and mechanism of xylo-oligosaccharides on for layers. Feed Ind., 22: 56-59.


  • Zhenping, S., L. Wenting, Y. Ruikui, L. Jia and L. Honghong et al., 2013. Effect of a straw-derived xylooligosaccharide on broiler growth performance, endocrine metabolism and immune response. Canadian J. Vet. Res., 77: 105-109.
    Direct Link    

  • © Science Alert. All Rights Reserved