HOME JOURNALS CONTACT

International Journal of Poultry Science

Year: 2010 | Volume: 9 | Issue: 10 | Page No.: 923-930
DOI: 10.3923/ijps.2010.923.930
Breeding for Efficient Phytate-phosphorus Utilization by Poultry
S. S. Diarra, B. A. Usman, J. U. Igwebuike and A. G. Yisa

Abstract: The ban of meat meal in poultry feed in most countries of the world and the high cost of fish meal have resulted in the increased use of plant products in poultry diets. However, phytate, which is the main storage form of phosphorus in plants, exerts antinutritional effects in poultry due to its ability to form insoluble complexes with essential minerals and proteins. In addition to these effects, the excretion of excess phosphorus into the environment is a serious cause of environmental pollution. Deactivation techniques such as boiling, fermentation, soaking and enzyme treatment have been used to reduce the level of phytate in plant materials. However, these techniques add to the cost and reduce the nutritional quality of the finished feed through the loss of nutrients. The modes of action of phytate in poultry, its distribution in plants, some common deactivation techniques and their limitations and certain intrinsic qualities of plants that can minimize the effects of phytate in the consuming animal are reviewed. The use of plant and animal breeding as an alternative to deactivation by physical and chemical methods and the use of enzymes are also highlighted.

Fulltext PDF

How to cite this article
S. S. Diarra, B. A. Usman, J. U. Igwebuike and A. G. Yisa, 2010. Breeding for Efficient Phytate-phosphorus Utilization by Poultry. International Journal of Poultry Science, 9: 923-930.

Keywords: Breeding, phytate and poultry

REFERENCES

  • Adeola, O., B.V. Lawrence, A.L. Sutton and T.R. Clime, 1995. Phytase induced changes in mineral utilization in zinc-supplemented diets for pigs. J. Anim. Sci., 73: 3384-3391.
    Direct Link    


  • Alonso, R., E. Orue, M.J. Zabalza, G. Grant and F. Marzo, 2000. Effect of extrusion cooking on structure and functional properties of peas and kidney bean protein. J. Sci. Food Agric., 80: 397-403.
    CrossRef    


  • Anderson-Hafermann, J.C., Y. Zhan and C.M. Parsons, 1993. Effects of processing on the nutritional quality of canola meal. Poult. Sci., 72: 326-333.
    Direct Link    


  • Anderson, P.A., 1985. Interaction Between Protein and Constituents that Affect Protein Quality. In: Digestibility and Amino Acid Availability in Cereals and Oilseeds, Finley, J.W. and D.T. Hopkins (Eds.). American Association of Cereal Chemists, Inc., St Paul, MN, pp: 31-45


  • Angel, R., S.D. Dhanhu, T.J. Applegate and M. Christman, 2001. Non-phytin phosphorus requirements in broilers on a four-phase feeding program. Proceedings of the International Symposium, Addressing Animal Production and Environmental Issues, Oct. 3-5, Sheraton Imperial, Research Triangle Park, NC, USA., pp: 159-170.


  • Armour, J.C., R.L.C. Perera, W.C. Buchan and G. Grant, 1998. Protease inhibitors and lectins in soya beans and effect of aqueous heat treatment. J. Sci. Food Agric., 78: 225-231.
    CrossRef    


  • Ballam, G.C., T.S. Nelson and L.K. Kirby, 1984. Effect of fiber and phytate source and of calcium and phosphorus level on phytate hydrolysis in the chick. Poult. Sci., 63: 333-338.
    CrossRef    PubMed    Direct Link    


  • Barrier-Guillot, B., P. Casado, P. Maupetit, C. Jonderville and F. Gatel, 1996. Wheat Phosphorus availability: 2, In vivo study in broilers and pigs; relationship with endogenous phytase activity and phytic phosphorus content in wheat. J. Sci., Food Agric., 70: 69-74.
    CrossRef    


  • Batherham, E.S., L.M. Anderson and D.R. Baigent, 1993. Utilization of ileal digestible amino acids by growing pigs: Methoinine. Br. J. Nutr., 70: 71-720.
    CrossRef    


  • Beech, S.A., E.S. Batterham and R. Elliott, 1991. Utilization of ileal digestible amino acids by growing pigs: Threonine. Br. J. Nutr., 65: 381-390.
    CrossRef    


  • Bernard, R.L. and T. Hymowitz, 1986. Registration of L81-4590, L81-4871 and L83-4387 soyabean germplasm lines lacking the Kunitz trypsin inhibitor. Crop Sci., 26: 650-651.
    Direct Link    


  • Broz, J., P. Oldale, A.H. Perrin-Voltz, G. Rychen, J. Schulze and C.S. Nunes, 1994. Effects of supplemental phytase on performance and phosphorus utilization in broiler chickens fed a low phosphorus diet without addition of inorganic phosphates. Br. Poult. Sci., 35: 273-280.
    PubMed    


  • Choct, M., 2006. Enzymes for the feed industy: Past, present and future. World's Poult. Sci., 62: 5-16.


  • Cosgrove, D.J., 1980. Inositol Phosphates: Their Chemistry, Biochemistry and Physiology. Elsevier Publication Scientific Publishing Co., New York


  • Cromwell, G.L., 1992. The biological availability of phosphorus in feedstuffs for pigs. Pig News Inf., 13: 75N-78N.


  • Davies, N.T. and R. Nightingale, 1975. The effects of phytate on intestinal absorption and secretion of zinc and whole body retention of zinc, copper, iron and manganese in rats. Br. J. Nutr., 34: 243-258.


  • De Boland, A.R., G.B. Garner and B.L. O'Dekk, 1975. Identification and properties of phytate in cereal grains and oilseed products. J. Agric. Food Chem., 23: 1186-1189.
    CrossRef    Direct Link    


  • Denbow, D.M., V. Ravindram, E.T. Kornegay, Z. Yi and R.M. Hulet, 1995. Improving phosphorus availability in soyabean meal for broilers by supplemental phytase. Poult. Sci., 74: 1831-1842.
    PubMed    


  • Deshpande, S.S. and M. Cheryan, 1984. Effects of phytic acid divalent cations and their interactions on alpha-amylase activity. J. Food Sci., 49: 516-519.
    CrossRef    


  • Diarra, S.S., B.A. Usman, I.D. Kwari and A. Yisa, 2008. Effects of processing methods on the antinutritional factor and the nutritional composition of sesame (Sesamum indicum L) seed. Sahel J. Vet. Sci., 7: 16-20.
    Direct Link    


  • Duhan, A., B.M. Chauhan, O. Punia and A.C. Kapoor, 1989. Phytic acid content of chickpea (Cicer arietinum) and black gram (Vigna mungo): Varietal differences and effect of domestic processing and cooking methods. J. Sci., Food Agric., 49: 449-455.
    CrossRef    


  • Eastwood, M.A., 1973. Vegetable fibre: Its physical properties. Proceeding Nutr. Soc., 32: 137-143.
    Direct Link    


  • Eeckhout, W. and M. De Paepe, 1991. The quantitative effects of an industrial microbial phytase and wheat phytase on the apparent phosphorus availability of a mixed feed by piglets. Meded. Fac. Landbouwwet, Rijksuiniv Ghent, 56: 1643-1648.


  • Eeckhout, W. and M. De Paepe, 1992. Effect of phytase from wheat or triticale and calcium level of a pig feed, on phosphorus digestibility with pigs. Proceedings of the 4th International Conference IMPHOS, Ghent, Sept. 8-11, Institut Mondial du phosphate, Casablanca, pp: 66-66.


  • Eeckhout, W. and M. De Paepe, 1994. Total phosphorus, phytate-phosphorus and phytase activity in plant feedstuffs. Anim. Feed Sci. Technol., 47: 19-29.
    CrossRef    Direct Link    


  • Edwards, H.M. Jr., 1983. Phosphorus 1. Effect of breed and strain on utilization of sub-optimal levels of phosphorus in the rations. Poult. Sci., 62: 77-84.
    PubMed    


  • Edwards, H.M.Jr., P. Palo, S. Soonchaerenying and M.A. Elliot, 1989. Factors Influencing the Bioavailability of Phytate Phosphorus to Chickens. In: Nutrient availability: Chemical and Biological Aspects, Southgate, D., I. Jonhson and G.R. Fenwick (Eds.). The Royal Society of Chemistry, Cambridge, pp: 271-276


  • Golovan, S.P., R.G. Meidinger, A. Ajakaiye, M. Cotrill and M.Z. Wiederkehr et al., 2001. Pigs expressing salivary phytase produce low-phosphorus manure. Nat. Biotechnol., 19: 741-745.
    CrossRef    


  • Hedge, S.N., B.A. Rolls, A. Turvey and M.E. Coates, 1978. The effects on chicks of dietary fibre of different sources: A growth factor in wheat bran. Br. J. Nutr., 40: 63-68.
    PubMed    


  • Hurrell, R.F., 2003. Influence of vegetable protein sources on trace element and mineral bioavailability. J. Nutr., 133: 2973S-2977S.
    PubMed    Direct Link    


  • Hymowitz, T., 1986. Genetics and Breedind of Soyabeans Lacking the Kunitz Trypsin Inhibitor. In: Nutritional and Technological Significance of Enzyme Inhibitors in Foods, Friedman, M. (Ed.). Plenum Publishing Co., New York, pp: 291-298


  • Kemme, P.A., A.W. Jongbloed, Z. Mroz and A.C. Beynen, 1998. Diurnal variation in degradation of phytic acid by plant phytase in the pig stomach. Livest. Prod. Sci., 54: 33-44.
    CrossRef    


  • Knuckles, B.E. and A.A. Betschart, 1987. Effect of phytate and other myo-inositol phosphate esters on α-amylase digestion of starch. J. Food Sci., 52: 719-721.
    CrossRef    Direct Link    


  • Khokhar, S. and B.M. Chauhan, 1986. Anti-nutritional factor in moth bean (Vigna aconitifolia), varietal differences and effects of methods of domestic processing and cooking. J. Food Sci., 51: 591-594.


  • Kondra, P.A., J.L. Sell and W. Guenter, 1974. Response of meat and egg type chickens to high fibre diet. Can. J. Anim. Sci., 54: 651-658.


  • Kornegay, E.T., 2001. Digestion of Phosphorus and other Nutrients: The Role of Phytases and Factors Influencing their Activity. In: Enzymes in Farm Animal Nutrition, Bedford, M.R. and G.G. Patridge (Eds.). CABI Publishing, London, pp: 237-271


  • Leeson, S., 1993. Recent Advances in fat Utilization by Poultry. In: Recent Advance in Animal Nutrition in Australia, Farrell, D.J. (Ed.). University of New England, Armidale, Australia, pp: 170-181


  • Lolas, G.M. and P. Markakis, 1975. Phytic acid and other phosphorus compounds of beans (Phaseolus vulgaris L.). J. Agric. Food Chem., 23: 13-15.
    CrossRef    Direct Link    


  • Maddaiah, V.T., A.A. Kumick, B.J. Hullet and B.L. Reid, 1964. Nature of intestinal phytase activity. Proc. Soc. Exp. Biol. Med., 115: 1054-1057.
    PubMed    


  • Maenz, D.D., C.M. Engele-Schaan, R.W. Newkirk and H.L. Classen, 1999. The effect of minerals and mineral chelators on the formation of phytase-resistante and phytase-susceptible forms of phytic acid in solution and in a slurry of canola meal. Anim. Feed Sci. Technol., 81: 177-192.


  • Kingsley, M.O., 1995. Effect of processing on some antinutritive and toxic components and on the nutritional composition of the African oil bean seed (Pentaclethra macrophylla Benth). J. Sci. Food Agric., 68: 153-158.
    CrossRef    Direct Link    


  • Mohanna, C. and Y. Nys, 1999. Changes in zinc and manganese availability in broiler chicks induced by vegetal and microbial phytases. Anim. Feed Sci. Technol., 77: 241-253.


  • Mroz, Z., A.W. Jongbloed and P.A. Kemme, 1994. Apparent digestibility and retention of nutrients bound phyate complexes as influenced by microbial phytase and feed regimen in pigs. J. Sci., 72: 126-126.


  • Nahm, K.H., 2007. Efficient phosphorus utilization in poultry feeding to lessen the environmental impact of excreta. World's Poult. Sci. J., 63: 625-654.


  • Nasi, J.M., E.H. Helander and K.H. Partanen, 1995. Availability for growing pigs of minerals and protein of a high phytate barley-rapeseed meal diet treated with Aspergillus niger phytase or soaked with whey. Anim. Feed Sci. Technol., 56: 83-98.
    Direct Link    


  • Nelson, T.S., T.R. Shieh, R.J. Wodzinski and J.H. Ware, 1968. The availability of phytate phosphorus in soybean meal before and after treatment with a mould phytase. Poult. Sci., 47: 1842-1848.
    PubMed    


  • O'Dell, B.L. and J.E. Savage, 1960. Effect of phytc acid on zinc availability. Proc. Soc. Exp. Biol. Med., 103: 304-304.


  • O'Dell, B.L., A.R. De Boland and S.R. Koirtyohann, 1972. Distribution of phytate and nutritionally important elements among the morphologigal components of cereal grains. J. Agric. Food Chem., 20: 718-723.
    CrossRef    


  • Officer, D.I. and E.S. Batterman, 1993. Enzyme supplementation of canola meal for grower pigs. Proc. Aust. Soc. Anim. Prod., 19: 288-288.


  • Ologhobo, A.D. and B.L. Fetuga, 1984. Distribution of phosphorus and phytate in some Nigerian varieties of legumes and some effects of processing. J. Food Sci., 49: 199-201.
    CrossRef    


  • Pallauf, J., G. Rimbach, S. Pippig, B. Schinder and E. Most, 1994. Effect of phytase supplementation to a phytate-rich diet based on wheat, barley and soya on the bioavailability of dietary phosphorus, calcium, magnesium, zinc and protein in piglets. Agribiol. Res., 47: 39-48.
    Direct Link    


  • Parsons, C.M., K. Hashimoto, K.J. Wedekind, Y. Han and D.H. Baker, 1992. Effect of over processing on availability of amino acids and energy in soyabean meal. Poult. Sci., 71: 133-140.
    Direct Link    


  • Pointillart, A., 1991. Enhancement of phosphorus utilization in growing pigs, fed phytate-rich diets by using rye bran. J. Anim. Sci., 69: 1109-1115.
    Direct Link    


  • Pointillart, A., 1994. The importance of cereal phytases. Feed Mix, 2: 12-15.


  • Ravindran, V., G. Ravindran and S. Sivalogan, 1994. Total and phytate phosphorus contents of various foods and feedstuffs of plant origin. Food Chem., 50: 133-136.
    CrossRef    Direct Link    


  • Ravindran, V., W.L. Bryden and E.T. Kornegay, 1995. Phytates: Occurrence, bioavailability and implications in poultry nutrition. Poult. Avian Biol. Rev., 6: 125-143.
    Direct Link    


  • Ravindran, V., S. Cabahug, G. Ravindran and W.L. Bryden, 1999. Influence of microbial phytase on apparent ileal amino acid digestibility of feedstuffs for broilers. Poult. Sci., 78: 699-706.
    CrossRef    Direct Link    


  • Ravindran, V., S. Cabahug, G. Ravindra, P.H. Selle and W.L. Bryden, 2000. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorous levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. Br. Poult. Sci., 41: 193-200.
    CrossRef    PubMed    Direct Link    


  • Reddy, N.R., C.V. Balakrishnan and D.K. Salunkhe, 1982. Phytase in legumes. Adv. Food Res., 28: 1-92.


  • Sebastian, S., S.P. Touchburn and E.R. Chavez, 1998. Implications of phytic acid and supplemental microbial phytase in poultry nutrition: A review. World Poult. Sci. J., 54: 27-47.
    CrossRef    Direct Link    


  • Selle, P.H., V. Ravindran, R.A. Caldwell and W.L. Bryden, 2000. Phytate and phytase: Consequences for protein utilisation. Nutr. Res. Rev., 13: 255-278.
    CrossRef    PubMed    


  • Simons, P.C.M., H.A.J. Versteegh, A.W. Jongbloed, P.A. Kemme and P. Slump et al., 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br. J. Nutr., 64: 525-540.
    CrossRef    Direct Link    


  • Smith, A.J., 2001. Poultry: The Tropical Agriculturalist. Macmillan Education, Ltd., London, Oxford


  • Singh, S., S. Gamlath and L. Wakeling, 2007. Nutritional aspects of food extrusion: A review. Int. J. Food Sci., 42: 916-929.
    CrossRef    


  • Singh, P.K., 2008. Significance of phytic acid and supplemental phytase in chicken nutrition: A review. World's Poult. Sci. J., 64: 553-580.
    CrossRef    Direct Link    


  • Singh, M. and A.D. Krikorian, 1982. Inhibition of trypsin activity in vitro by phytase. J. Agric. Food Chem., 30: 799-800.


  • Sutardi, L. and K.A. Buckle, 1985. Reduction in phytic acid levels in soyabeans during Tempeh production, storage and frying. J. Food Sci., 50: 260-263.
    CrossRef    


  • Nestares, T., M. Barrionuevo, G. Urbano and M. Lopez-Frias, 1999. Effect of processing methods on the calcium phosphorus and phytic acid contents and nutritive utilization of chickpea (Cicerarietinum L.). J. Agric. Food Chem., 47: 2807-2812.
    CrossRef    


  • Tyagi, P.K., P.K. Tyagui and S.V.S. Verma, 1998. Phytate phosphorus content of some common poultry feedstuffs. Int. J. Poult. Sci., 33: 86-88.


  • Usayram, N. and D. Balnave, 1995. Phosphorus requirements of laying hens fed on wheat-based diets. Br. Poult. Sci., 30: 285-301.
    PubMed    


  • Van Barneveld, R.J., E.S. Batterham and B.W. Norton, 1994. The effect of heat on amino acids for growing pigs.2. Utilization of ileal-digestible lysine from heat-treated field peas (Pisum satium cultivar Dundale). Br. J. Nutr., 72: 243-256.


  • Vohra, P., A. Gray and F.H. Kratzer, 1965. Phytic acid-metal complexes. Proc. Soc. Exp. Biol. Med., 120: 447-449.
    PubMed    


  • Vucenik, I. and A.M. Shamsuddin, 2003. Cancer inhibition by inositol hexaphosphate (IP6) and inositol: From laboratory to clinic. J. Nutr., 33: 3778S-3784S.
    PubMed    Direct Link    


  • Wise, A., 1983. Dietary factors determining the biological activities of phytate. Nutr. Abstr. Rev., 53: 791-806.


  • Yi, Z., E.T. Kornegay and A. McGuirk, 1994. Replacement values of inorganic phosphorus by microbial phytase for pigs and poultry. J. Anim. Sci., 72: 330-330.


  • Yi, Z., E.T. Kornegay and D.M. Denbow, 1996. Effects of microbial phytase on nitrogen and amino acid digestibility and nitrogen retention of turkey poults fed corn-soyabean meal diets. Poult. Sci., 75: 979-990.
    PubMed    


  • Zanini, S.F. and M.H. Sazzad, 1999. Effects of microbial phytase on growth and mineral utilisation in broilers fed on maize soyabean-based diets. Br. Poult. Sci., 40: 348-352.
    CrossRef    PubMed    Direct Link    


  • Zhang, Y. and C.M. Parsons, 1993. Effects of over processing on the nutrional quality of sunflower meal. Poult. Sci., 73: 436-442.
    Direct Link    


  • NRC, 1984. National Research Council. 8th Rev. Edn., National Academy Press, Washington, DC


  • Say, R.R., 1992. Manual of Poultry Production in the Tropics. CAB International, New York, pp: 118


  • Sazzad, M.H., P.E.N. Givisiez and C.G. Silva, 1995. Effects of dietary protein, phosphorus and phytase on performance and phosphorus utilization of broiler chicks. Poult. Sci., 74: 109-109.


  • Scheurmann, S.E., Von, H.L. Lantzsch and K.H. Menke, 1988. In vitro experiments on the hydrolysis of phytate. 2. Activity of plant phytase. J. Anim. Physiol. Anim. Nutr., 60: 64-64.


  • Liener, I.E., 1989. Anti Nutritional Factors in Legume Seeds: State of Art. In: Recent Advances of Research on Anti Nutritional Factors in Legume Seeds, Huismen, J., T.B.F. Van Der Poel and I.E. Liener (Eds.). Pudoc, Wageningen, The Netherlands, pp: 6-13


  • Caldwell, R.A., 1992. Effect of calcium and phytic acid on the activation of trypsinogen and the stability of trypsin. J. Agric. Chem., 40: 43-46.
    CrossRef    Direct Link    


  • Thompson, L.U. and H. Yoon, 1984. Starch digestibility as affected by polyphenols and phytic acid. J. Food Sci., 49: 1228-1229.
    CrossRef    


  • Maga, J.A., 1982. Phytate: Its chemistry, occurrence, food interactions, nutritional significance and methods of analysis. J. Agric. Food Chem., 30: 1-9.
    CrossRef    Direct Link    

  • © Science Alert. All Rights Reserved