HOME JOURNALS CONTACT

International Journal of Pharmacology

Year: 2006 | Volume: 2 | Issue: 6 | Page No.: 623-627
DOI: 10.3923/ijp.2006.623.627
Mitochondrial Cardiac Energy Metabolism after One Treatment with Benzonidazole-Rochagan®
D. A. Rendon

Abstract: It was studied the mitochondrial parameters that characterized the mitochondrial cardiac energy metabolism after one treatment with benzonidazole-Rochagan®. The drug was given orally (100 mg benzonidazole/kg body weight) adult male Sprague-Dawley rats during nine consecutive days. The assayed mitochondrial parameters, using glutamate/malate and succinate as oxidative substrates, were the state 4, the state 3, the respiratory control, the efficiency of oxidative phosphorylation, the transmembrane electrical potential and the activity of the mitochondrial ATPsynthase. The results showed that all these mitochondrial parameters were not altered statistically after the above mentioned treatment, indicating that after this benzonidazole administration the mitochondrial cardiac energy metabolism was not altered.

Fulltext PDF

How to cite this article
D. A. Rendon , 2006. Mitochondrial Cardiac Energy Metabolism after One Treatment with Benzonidazole-Rochagan®. International Journal of Pharmacology, 2: 623-627.

Keywords: respiration, oxidative phosphorylation, Benzonidazole, mitochondria and heart

REFERENCES

  • Castro, J.A. and E.G. Diaz-de-Toranzo, 1988. Toxic effects of nifurtimox and benznidazole, two drugs used against American trypanosomiasis (Chagas' disease). Biomed. Environ. Sci., 1: 19-33.
    PubMed    Direct Link    


  • De Souza, A.P., B.P. Olivieri, S.L. de Castro and T.C. Araujo-Jorge, 2000. Enzymatic markers of heart lesion in mice infected with Trypanosoma cruzi and submitted to benzonidazole chemotherapy. Parasitol. Res., 86: 800-808.
    PubMed    Direct Link    


  • Feldman, A.M. and D. McNamara, 2000. Myocarditis. N. Engl. J. Med., 343: 1388-1398.


  • Garcia, S., C.O. Ramos, J.F.V. Senra, F. Vilas-Boas and M.M. Rodrigues et al., 2005. Treatment with benznidazole during the chronic phase of experimental Chagas disease decreases cardiac alterations. Antimicrob. Agents Chemother., 49: 1521-1528.
    CrossRef    


  • Gornall, A.G., C.J. Bardawill and M.M. David, 1949. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem., 177: 751-766.
    CrossRef    PubMed    Direct Link    


  • Harris, D.A. and A.M. Das, 1991. Control of mitochondrial ATP synthesis in the heart. Biochem. J., 280: 561-573.
    PubMed    


  • Jennings, R.B., H.K. Hawkins, J.E. Lowe, M.L. Hill, S. Klotman and K.A. Reimer, 1978. Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am. J. Pathol., 92: 187-214.


  • Lemeshko, V.V., 2002. Biphasic oxidation of mitochondrial NAD (P) H. Biochem. Biophys. Res. Commun., 291: 170-175.
    CrossRef    Direct Link    


  • Marr, J.J. and R. Docampo, 1986. Chemotherapy for chagas disease a perspective of current therapy and considerations for future research. Rev. Infect. Dis., 8: 884-903.


  • Mela, L. and S. Seitz, 1979. Isolation of mitochondria with emphasis on heart mitochondria from small amount of tissue. Methods Enzymol., 55: 39-46.


  • Moreno-Sanchez, R., C. Bravo, G.A. Vasquez, L.H. Silveria and M. Martinez-Lavin, 1999. Inhibition and uncoupling of oxidative phosphorylation by nonsteroidal anti-inflammatory drugs: Study in mitochondria, submitochondrial particles cells and whole heart. Biochem. Pharmacol., 57: 743-752.


  • Rodrigues, C.J. and S.L. de Castro, 2002. A critical review on Chagas disease chemotherapy. Mem. Inst. Oswaldo Cruz., 97: 3-24.
    PubMed    Direct Link    


  • Sanchez, H., X. Bigard, V. Veksler, B. Mettauer, E. Lampert, J. Lonsdorfer and R. Ventura-Clapier, 2000. Immunosuppressive treatment affects cardiac and skeletal muscle mitochondria by the toxic effect of vehicle. J. Mol. Cell. Cardiol., 32: 323-331.


  • Sanchez, H., J. Zoll, V. Veksler, B. Mettauer, E. Lampert, J. Lonsdorfer and R. Ventura-Clapier, 2001. Effect of cyclosporine A and its vehicle on cardiac and skeletal muscle mitochondria relationship to efficacy of the respiratory chain. Br. J. Pharmacol, 133: 781-788.


  • Scott, K.M., V.A. Knight, C.T. Settlemire and G.P. Brierley, 1970. Differential effects of mercurial reagents on membrane thiols and on the permeability of the heart mitochondrion. Biochemistry, 9: 714-724.


  • Toledo, M.J.O., M.T. Bahia, V.M. Veloso, C.M. Carneiro and G.L.L. Machado-Coelho et al., 2004. Effects of specific treatment on parasitological and histopathological parameters in mice infected with different Trypanosoma cruzi clonal genotypes. J. Antimicrob. Chemother., 53: 1045-1053.
    Direct Link    


  • Turrens, Jr. J.F., B.P. Watts, L. Zhong and R. Docampo, 1996. Inhibition of Trypanosoma cruzi and T. brucei NADH fumarate reductase by benzonidazole and anthelmintic imidazole derivatives. Mol. Biochem. Parasitol., 82: 125-129.
    PubMed    Direct Link    


  • Viotti, R., C. Vigliano, B. Lococo, G. Bertocchi, M. Petti, M.G. Alvarez, M. Postan and A. Armenti, 2006. Long-term cardiac outcomes of treating chronic Chagas disease with benznidazole versus no treatment anonrandomized trial. Ann. Intern. Med., 144: 724-734.


  • Weir, E., 2006. Chagas disease hidden affliction and visible neglect. Can. Med. Assoc. J., 174: 1096-1096.
    Direct Link    

  • © Science Alert. All Rights Reserved