HOME JOURNALS CONTACT

International Journal of Cancer Research

Year: 2016 | Volume: 12 | Issue: 2 | Page No.: 109-121
DOI: 10.3923/ijcr.2016.109.121
Withdrawn: Cyclic Dependent Kinases (CDKs) in Cancer Pathogenesis and Therapeutics
Bekesho Geleta, Eyasu Makonnen and Solomon M. Abay

Abstract:

A CASE OF DUPLICATE PUBLICATION

ONE of the readers of the International Journal of Cancer Research pointed out duplicate publication of the following two articles:

1. Bekesho Geleta, Eyasu Makonnen and Solomon M. Abay, 2016. Cyclic Dependent Kinases (CDKs) in Cancer Pathogenesis and Therapeutics. International Journal of Cancer Research published in Vol: 12, Issue: 2, p: 109-121, DOI: 10.3923/ijcr.2016.109.121.

2. Bekesho Geleta, Eyasu Makonnen and Solomon M. Abay, 2016. N-myc Downstream Regulated Gene1 (NDRG1) in Cancer Metastasis and Therapeutics. International Journal of Cancer Research published in Vol: 12, Issue: 2, p: 122.127, DOI: 10.3923/ijcr.2016.122.127.

Corresponding Author Bekosho Geleta submitted the same articles to the following journal and got published:

1. Bekesho Geleta, Eyasu Makonnen and Solomon M Abay, 2016. Cyclic Dependent Kinase (CDK): Role in Cancer Pathogenesis and as Drug Target in Cancer Therapeutics. Journal of Cancer Science & Therapy; 2016, 8(6): 160-167, DOI:10.4172/1948-5956.1000408.

2. Bekesho Geleta, Eyasu Makonnen and Solomon M Abay, 2016. N-myc Downstream Regulated Gene (NDRG): Role in Cancer Metastasis Suppression and as Drug Target in Cancer Therapeutics. Journal of Cancer Science & Therapy 2016, 8(6): 154-159, DOI:10.4172/1948-5956.1000407.

According to the policy of the journal, materials submitted to International Journal of Cancer Research must be original and not published or submitted for publication elsewhere. This is the editorial policy that author have to submit one article in one journal at a time.

International Journal of Cancer Research considers misappropriation of intellectual property and submitting same articles simultaneously in two different journals for publication is unethical and totally unacceptable.

Bekosho Geleta is involved in duplicate submissions and publications.

Therefore, Publisher of International Journal of Cancer Research decided to withdraw these two articles immediately.

Fulltext PDF

How to cite this article
Bekesho Geleta, Eyasu Makonnen and Solomon M. Abay, 2016. Withdrawn: Cyclic Dependent Kinases (CDKs) in Cancer Pathogenesis and Therapeutics. International Journal of Cancer Research, 12: 109-121.

Keywords: CDK, therapeutic target, drug discovery, cancer therapeutics, cell cycle and Cancer

REFERENCES

  • Gelbert, L.M., S. Cai, X. Lin, C. Sanchez-Martinez and M. del Prado et al., 2014. Preclinical characterization of the CDK4/6 inhibitor LY2835219: In-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest. New Drugs, 32: 825-837.
    CrossRef    Direct Link    


  • Tadesse, S., M. Yu, M. Kumarasiri, B.T. Le and S. Wang, 2015. Targeting CDK6 in cancer: State of the art and new insights. Cell Cycle, 14: 3220-3230.
    CrossRef    Direct Link    


  • Finn, R.S., A. Aleshin and D.J. Slamon, 2016. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res., Vol. 18.
    CrossRef    


  • Doree, M. and T. Hunt, 2002. From Cdc2 to Cdk1: When did the cell cycle kinase join its cyclin partner? J. Cell Sci., 115: 2461-2464.
    Direct Link    


  • Miele, A., C.D. Braastad, W.F. Holmes, P. Mitra and R. Medina et al., 2005. HiNF-P directly links the cyclin E/CDK2/p220NPAT pathway to histone H4 gene regulation at the G1/S phase cell cycle transition. Mol. Cell. Biol., 25: 6140-6153.
    CrossRef    Direct Link    


  • Wang, S., G. Griffiths, C.A. Midgley, A.L. Barnett and M. Cooper et al., 2010. Discovery and characterization of 2-anilino-4-(thiazol-5-yl)pyrimidine transcriptional CDK inhibitors as anticancer agents. Chem. Biol., 17: 1111-1121.
    CrossRef    Direct Link    


  • Fernandez-Guerra, A., A. Aze, J. Morales, O. Mulner-Lorillon and B. Cosson et al., 2006. The genomic repertoire for cell cycle control and DNA metabolism in S. purpuratus. Dev. Biol., 300: 238-251.
    CrossRef    Direct Link    


  • Siemeister, G., U. Lucking, A.M. Wengner, P. Lienau and W. Steinke et al., 2012. BAY 1000394, a novel cyclin-dependent kinase inhibitor, with potent antitumor activity in mono- and in combination treatment upon oral application. Mol. Cancer Therapeutics, 11: 2265-2273.
    CrossRef    Direct Link    


  • Ouelaa-Benslama, R., O. De Wever, A. Hendrix, M. Sabbah and K. Lambein et al., 2012. Identification of a GαGβγ, AKT and PKCα signalome associated with invasive growth in two genetic models of human breast cancer cell epithelial-to-mesenchymal transition. Int. J. Oncol., 41: 189-200.
    CrossRef    Direct Link    


  • Ye, X., Y. Wei, G. Nalepa and J.W. Harper, 2003. The cyclin E/Cdk2 substrate p220NPAT is required for S-phase entry, histone gene expression and Cajal body maintenance in human somatic cells. Mol. Cell. Biol., 23: 8586-8600.
    CrossRef    Direct Link    


  • Keezer, S.M. and D.M. Gilbert, 2002. Evidence for a pre-restriction point Cdk3 activity. J. Cell. Biochem., 85: 545-552.
    CrossRef    Direct Link    


  • Belachew, S., A.A. Aguirre, H. Wang, F. Vautier and X. Yuan et al., 2002. Cyclin-dependent kinase-2 controls oligodendrocyte progenitor cell cycle progression and is downregulated in adult oligodendrocyte progenitors. J. Neurosci., 22: 8553-8562.
    PubMed    Direct Link    


  • Cao, K. and A. Shilatifard, 2014. Inhibit globally, act locally: CDK7 inhibitors in cancer therapy. Cancer Cell, 26: 158-159.
    CrossRef    Direct Link    


  • Xie, G.E., H. Tang, S. Wu, J. Chen, J. Liu and C. Liao, 2014. The cyclin-dependent kinase inhibitor SNS-032 induces apoptosis in breast cancer cells via depletion of Mcl-1 and X-linked inhibitor of apoptosis protein and displays antitumor activity in vivo. Int. J. Oncol., 45: 804-812.
    CrossRef    Direct Link    


  • Wei, Y., J. Jin and J.W. Harper, 2003. The cyclin E/Cdk2 substrate and Cajal body component p220NPAT activates histone transcription through a novel LisH-like domain. Mol. Cell. Biol., 23: 3669-3680.
    CrossRef    Direct Link    


  • Hanahan, D. and R.A. Weinberg, 2011. Hallmarks of cancer: The next generation. Cell, 144: 646-674.
    CrossRef    PubMed    Direct Link    


  • Wang, P., S. Chen, H. Fang, X. Wu and D. Chen et al., 2016. miR-214/199a/199a* cluster levels predict poor survival in hepatocellular carcinoma through interference with cell-cycle regulators. Oncotarget, 7: 929-945.
    CrossRef    PubMed    Direct Link    


  • Paiva, C., J.C. Godbersen, R.S. Soderquist, T. Rowland and S. Kilmarx et al., 2015. Cyclin-dependent kinase inhibitor P1446A induces apoptosis in a JNK/p38 MAPK-dependent manner in chronic lymphocytic leukemia B-cells. PloS One, Vol. 10.
    CrossRef    


  • Perez, M., S. Munoz-Galvan, M.P. Jimenez-Garcia, J.J. Marin and A. Carnero, 2015. Efficacy of CDK4 inhibition against sarcomas depends on their levels of CDK4 and p16ink4 mRNA. Oncotarget, 6: 40557-40574.
    CrossRef    PubMed    Direct Link    


  • Liu, X., F. Lam, S. Shi, P.M. Fischer and S. Wang, 2012. In vitro antitumor mechanism of a novel cyclin-dependent kinase inhibitor CDKI-83. Invest. New Drugs, 30: 889-897.
    CrossRef    Direct Link    


  • Chipumuro, E., E. Marco, C.L. Christensen, N. Kwiatkowski and T. Zhang et al., 2014. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell, 159: 1126-1139.
    CrossRef    Direct Link    


  • Berthet, C., K.D. Klarmann, M.B. Hilton, H.C. Suh, J.R. Keller, H. Kiyokawa and P. Kaldis, 2006. Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev. Cell, 10: 563-573.
    CrossRef    Direct Link    


  • Johnson, N., J. Bentley, L.Z. Wang, D.R. Newell, C.N. Robson, G.I. Shapiro and N.J. Curtin, 2010. Pre-clinical evaluation of cyclin-dependent kinase 2 and 1 inhibition in anti-estrogen-sensitive and resistant breast cancer cells. Br. J. Cancer, 102: 342-350.
    CrossRef    Direct Link    


  • Wang, S. and P.M. Fischer, 2008. Cyclin-dependent kinase 9: A key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends Pharmacol. Sci., 29: 302-313.
    CrossRef    Direct Link    


  • Walsby, E., G. Pratt, H. Shao, A.Y. Abbas and P.M. Fischer et al., 2014. A novel Cdk9 inhibitor preferentially targets tumor cells and synergizes with fludarabine. Oncotarget, 5: 375-385.
    CrossRef    PubMed    Direct Link    


  • Liu, X., S. Shi, F. Lam, C. Pepper, P.M. Fischer and S. Wang, 2012. CDKI-71, a novel CDK9 inhibitor, is preferentially cytotoxic to cancer cells compared to flavopiridol. Int. J. Cancer, 130: 1216-1226.
    CrossRef    Direct Link    


  • Mariaule, G. and P. Belmont, 2014. Cyclin-dependent kinase inhibitors as marketed anticancer drugs: Where are we now? A short survey. Molecules, 19: 14366-14382.
    CrossRef    Direct Link    


  • Zariwala, M., J. Liu and Y. Xiong, 1998. Cyclin E2, a novel human G1 cyclin and activating partner of CDK2 and CDK3, is induced by viral oncoproteins. Oncogene, 17: 2787-2798.
    PubMed    Direct Link    


  • Kitagawa, M., K. Kitagawa, Y. Kotake, H. Niida and T. Ohhata, 2013. Cell cycle regulation by long non-coding RNAs. Cell. Mol. Life Sci., 70: 4785-4794.
    CrossRef    Direct Link    


  • Kelso, T.W.R., K. Baumgart, J. Eickhoff, T. Albert and C. Antrecht et al., 2014. Cyclin-dependent kinase 7 controls mRNA synthesis by affecting stability of preinitiation complexes, leading to altered gene expression, cell cycle progression and survival of tumor cells. Mol. Cell. Biol., 34: 3675-3688.
    CrossRef    PubMed    Direct Link    


  • Lam, F., A.Y. Abbas, H. Shao, T. Teo and J. Adams et al., 2014. Targeting RNA transcription and translation in ovarian cancer cells with pharmacological inhibitor CDKI-73. Oncotarget, 5: 7691-7704.
    CrossRef    PubMed    Direct Link    


  • Rodriguez-Diez, E., V. Quereda, F. Bellutti, M. Prchal-Murphy and D. Partida et al., 2014. Cdk4 and Cdk6 cooperate in counteracting the INK4 family of inhibitors during murine leukemogenesis. Blood, 124: 2380-2390.
    CrossRef    Direct Link    


  • Albert, T.K., C. Rigault, J. Eickhoff, K. Baumgart and C. Antrecht et al., 2014. Characterization of molecular and cellular functions of the cyclin-dependent kinase CDK9 using a novel specific inhibitor. Br. J. Pharmacol., 171: 55-68.
    CrossRef    Direct Link    


  • Sakurikar, N., R. Thompson, R. Montano and A. Eastman, 2016. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget, 7: 1380-1394.
    CrossRef    PubMed    Direct Link    


  • Ghiani, C.A. and V. Gallo, 2001. Inhibition of cyclin E-cyclin-dependent kinase 2 complex formation and activity is associated with cell cycle arrest and withdrawal in oligodendrocyte progenitor cells. J. Neurosci., 21: 1274-1282.
    Direct Link    


  • Park, D.S., B. Levine, G. Ferrari and L.A. Greene, 1997. Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J. Neurosci., 17: 8975-8983.
    Direct Link    


  • Cerqueira, A., D. Santamaria, B. Martinez-Pastor, M. Cuadrado, O. Fernandez-Capetillo and M. Barbacid, 2009. Overall Cdk activity modulates the DNA damage response in mammalian cells. J. Cell Biol., 187: 773-780.
    CrossRef    Direct Link    


  • Kang, J., C.M. Sergio, R.L. Sutherland and E.A. Musgrove, 2014. Targeting Cyclin-Dependent Kinase 1 (CDK1) but not CDK4/6 or CDK2 is selectively lethal to MYC-dependent human breast cancer cells. BMC Cancer, Vol. 14.
    CrossRef    


  • Allan, L.A. and P.R. Clarke, 2007. Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol. Cell, 26: 301-310.
    CrossRef    Direct Link    


  • Wang, L., J. Wang, B.W. Blaser, A.M. Duchemin and D.F. Kusewitt et al., 2007. Pharmacologic inhibition of CDK4/6: Mechanistic evidence for selective activity or acquired resistance in acute myeloid leukemia. Blood, 110: 2075-2083.
    CrossRef    Direct Link    


  • James, M.K., A. Ray, D. Leznova and S.W. Blain, 2008. Differential modification of p27Kip1 controls its cyclin D-CDK4 inhibitory activity. Mol. Cell. Biol., 28: 498-510.
    CrossRef    Direct Link    


  • Ray, A., M.K. James, S. Larochelle, R.P. Fisher and S.W. Blain, 2009. p27Kip1 inhibits cyclin D-cyclin-dependent kinase 4 by two independent modes. Mol. Cell. Biol., 29: 986-999.
    CrossRef    Direct Link    


  • Logan, J.E., N. Mostofizadeh, A.J. Desai, E. von Euw and D. Conklin et al., 2013. PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity. Anticancer Res., 33: 2997-3004.
    Direct Link    


  • Charrier-Savournin, F.B., M.T. Chateau, V. Gire, J. Sedivy, J. Piette and V. Dulic, 2004. p21-mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol. Biol. Cell, 15: 3965-3976.
    CrossRef    Direct Link    


  • Linton, A., Y.Y. Cheng, K. Griggs, M.B. Kirschner and S. Gattani et al., 2014. An RNAi-based screen reveals PLK1, CDK1 and NDC80 as potential therapeutic targets in malignant pleural mesothelioma. Br. J. Cancer, 110: 510-519.
    CrossRef    Direct Link    


  • O'Donovan, D.S., S. MacFhearraigh, J. Whitfield, L.B. Swigart, G.I. Evan and M.M. McGee, 2013. Sequential Cdk1 and Plk1 phosphorylation of protein tyrosine phosphatase 1B promotes mitotic cell death. Cell Death Dis., Vol. 4.
    CrossRef    


  • Neganova, I., K. Tilgner, A. Buskin, I. Paraskevopoulou and S.P. Atkinson et al., 2014. CDK1 plays an important role in the maintenance of pluripotency and genomic stability in human pluripotent stem cells. Cell Death Dis., Vol. 5.
    CrossRef    


  • Zhang, X., Q. Chen, J. Feng, J. Hou and F. Yang et al., 2009. Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the γTuRC to the centrosome. J. Cell Sci., 122: 2240-2251.
    CrossRef    Direct Link    


  • Warfel, N.A., N.G. Dolloff, D.T. Dicker, J. Malysz and W.S. El-Deiry, 2013. CDK1 stabilizes HIF-1α via direct phosphorylation of Ser668 to promote tumor growth. Cell Cycle, 12: 3689-3701.
    CrossRef    Direct Link    


  • Tran, T., V. Kolupaeva and C. Basilico, 2010. FGF inhibits the activity of the cyclin B1/CDK1 kinase to induce a transient G2 arrest in RCS chondrocytes. Cell Cycle, 9: 4379-4386.
    CrossRef    Direct Link    


  • Padmakumar, V.C., E. Aleem, C. Berthet, M.B. Hilton and P. Kaldis, 2009. CDK2 and CDK4 activities are dispensable for tumorigenesis caused by the loss of p53. Mol. Cell. Biol., 29: 2582-2593.
    CrossRef    Direct Link    


  • Tong, W.G., R. Chen, W. Plunkett, D. Siegel and R. Sinha et al., 2010. Phase I and pharmacologic study of SNS-032, a potent and selective Cdk2, 7 and 9 inhibitor, in patients with advanced chronic lymphocytic leukemia and multiple myeloma. J. Clin. Oncol., 28: 3015-3022.
    CrossRef    Direct Link    


  • Gladden, A.B. and J.A. Diehl, 2003. Cell cycle progression without cyclin E/CDK2: Breaking down the walls of dogma. Cancer Cell, 4: 160-162.
    CrossRef    Direct Link    


  • Bockstaele, L., H. Kooken, F. Libert, S. Paternot and J.E. Dumont et al., 2006. Regulated activating Thr172 phosphorylation of cyclin-dependent kinase 4(CDK4): Its relationship with cyclins and CDK inhibitors. Mol. Cell. Biol., 26: 5070-5085.
    CrossRef    Direct Link    


  • Bockstaele, L., X. Bisteau, S. Paternot and P.P. Roger, 2009. Differential regulation of cyclin-dependent kinase 4 (CDK4) and CDK6, evidence that CDK4 might not be activated by CDK7 and design of a CDK6 activating mutation. Mol. Cell. Biol., 29: 4188-4200.
    CrossRef    Direct Link    


  • Lang, E., C. Zelenak, M. Eberhard, R. Bissinger and A. Rotte et al., 2015. Impact of cyclin-dependent kinase CDK4 inhibition on eryptosis. Cell. Physiol. Biochem., 37: 1178-1186.
    CrossRef    Direct Link    


  • Cristofanilli, M., N.C. Turner, I. Bondarenko, J. Ro and S.A. Im et al., 2016. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): Final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol., 17: 425-439.
    CrossRef    Direct Link    


  • Baker, A., G.P. Gregory, I. Verbrugge, L. Kats and J.J. Hilton et al., 2016. The CDK9 inhibitor dinaciclib exerts potent apoptotic and antitumor effects in preclinical models of MLL-rearranged acute myeloid leukemia. Cancer Res., 76: 1158-1169.
    CrossRef    Direct Link    


  • Krystof, V., S. Baumli and R. Furst, 2012. Perspective of Cyclin-Dependent Kinase 9 (CDK9) as a drug target. Curr. Pharmaceut. Des., 18: 2883-2890.
    CrossRef    Direct Link    


  • Augert, A. and D. MacPherson, 2014. Treating transcriptional addiction in small cell lung cancer. Cancer Cell, 26: 783-784.
    CrossRef    Direct Link    


  • Kwiatkowski, N., T. Zhang, P.B. Rahl, B.J. Abraham and J. Reddy et al., 2014. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature, 511: 616-620.
    CrossRef    Direct Link    


  • Chohan, T.A., H.Y. Qian, Y.L. Pan and J.Z. Chen, 2016. Molecular simulation studies on the binding selectivity of 2-anilino-4-(thiazol-5-yl)-pyrimidines in complexes with CDK2 and CDK7. Mol. BioSyst., 12: 145-161.
    CrossRef    Direct Link    


  • Yang, W.H., J.H. Heaton, H. Brevig, S. Mukherjee, J.A. Iniguez-Lluhi and G.D. Hammer, 2009. SUMOylation inhibits SF-1 activity by reducing CDK7-mediated serine 203 phosphorylation. Mol. Cell. Biol., 29: 613-625.
    CrossRef    PubMed    Direct Link    


  • Garriga, J., H. Xie, Z. Obradovic and X. Grana, 2010. Selective control of gene expression by CDK9 in human cells. J. Cell. Physiol., 222: 200-208.
    CrossRef    Direct Link    


  • Garriga, J. and X. Grana, 2014. CDK9 inhibition strategy defines distinct sets of target genes. BMC Res. Notes, Vol. 7.
    CrossRef    


  • Natoni, A., L.S. Murillo, A.E. Kliszczak, M.A. Catherwood and A. Montagnoli et al., 2011. Mechanisms of action of a dual Cdc7/Cdk9 kinase inhibitor against quiescent and proliferating CLL cells. Mol. Cancer Therapeut., 10: 1624-1634.
    CrossRef    Direct Link    


  • Yeh, Y.Y., R. Chen, J. Hessler, E. Mahoney and A.M. Lehman et al., 2015. Up-regulation of CDK9 kinase activity and Mcl-1 stability contributes to the acquired resistance to cyclin-dependent kinase inhibitors in leukemia. Oncotarget, 6: 2667-2679.
    CrossRef    PubMed    Direct Link    


  • Lu, J., 2015. Palbociclib: A first-in-class CDK4/CDK6 inhibitor for the treatment of hormone-receptor positive advanced breast cancer. J. Hematol. Oncol., Vol. 8.
    CrossRef    

  • © Science Alert. All Rights Reserved