Subscribe Now Subscribe Today
Research Article
 

Medicinal Plants as a Source of Antioxidants



Sushil Chandra Sati, Nitin Sati, U. Rawat and O.P. Sati
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Presently, there has been an amplified interest worldwide to identify antioxidant compounds which are pharmacologically effective and have low or no side effects for use in preventive medicine and the food industry. Plants produce significant amount of antioxidants such as flavonoids, phenolics and polyphenolics (condensed and hydrolysable tannins) to prevent the oxidative stress caused by reactive oxygen species. Ayurveda, Unani Chinese and other traditional medical systems, provide substantial lead to find active and therapeutically useful antioxidant compounds from plants. Considering the growing interest in assessing the antioxidant capacity of natural products the phytochemistry of plants having antioxidant activity has been reported.

Services
Related Articles in ASCI
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Sushil Chandra Sati, Nitin Sati, U. Rawat and O.P. Sati, 2010. Medicinal Plants as a Source of Antioxidants. Research Journal of Phytochemistry, 4: 213-224.

URL: https://scialert.net/abstract/?doi=rjphyto.2010.213.224
 
Received: February 04, 2010; Accepted: March 28, 2010; Published: July 17, 2010



INTRODUCTION

Life on earth survives only due to presence of oxygen. Oxygen gives us energy by oxidation of food which is essential for living. During this process highly reactive and harmful oxygen species are also generated which can damage living organisms. Organisms contain a complex network of antioxidant molecules and enzymes that work together to prevent oxidative damage of cellular components such as DNA, proteins and lipids (Sies, 1997; Vertuani et al., 2004; Nicholls and Budd, 2000; Shirwaikar et al., 2004; Halliwell et al., 1992). In general, we can say that these antioxidants either prevent these reactive oxygen species being formed or remove them before they can damage the cellular components. The active oxygen species create hydrogen peroxide (H2O2), hypochlorous acid (HOCl) and free radicals such as hydroxyl radical (OH) and superoxide anions (O2¯) (Valko et al., 2007). These reactive oxygen species are generated during the sequential reduction of molecular oxygen. The addition of one electron to O2 yields the superoxide radical (O2¯), which on further reduction gives hydrogen peroxide (H2O2), a divalent oxygen reduction product. Trivalent oxygen reduction occurs by reaction of H2O2 with O2¯ to produce the hydroxyl radical (OH). The reaction rate of formation of OH is enhanced in presence of metal catalyst (Fe+3) via the Haber-Weiss reaction (Haber and Weiss, 1934) (Table 1). Besides OH formation, experimentally induced interactions between H2O2 and iron chelates may also lead to the production of the reactive iron peroxocomplex and ferryl ion (Rush and Koppenol, 1986; Winterbourn, 1987). However, their role in human and microbial physiology is basically unknown.

Table 1: Chemical reaction involving reactive oxygen species
Image for - Medicinal Plants as a Source of Antioxidants

Image for - Medicinal Plants as a Source of Antioxidants
Fig. 1: The free radical mechanism of lipid peroxidation

Although most investigations have focused on OH formation by the Haber-Weiss mechanism, evidence also exists for the formation of OH from O2¯ mediated reduction of hypochlorous acid (HOCl) (Candeias et al., 1993; Long and Bielski, 1980; Okolow-Zubkowska and Hill, 1982; Ramos et al., 1992). HOCl is generated by the interaction of H2O2 with phagocyte-derived peroxidases is itself a powerful oxidant.

These reactive oxygen species are extremely reactive and initiate the chemical chain reactions with biological molecules. Due to these chain reactions the cell may function feebly or get damaged such as lipid peroxidation or oxidation of DNA or proteins (Fig. 1).

There is abundant evidence to connect free radicals in the development of degenerative diseases (Huong et al., 1998; Haraguchi et al., 1997). Active oxygen species (or reactive oxygen species) and free radical-mediated reactions are involved in degenerative or pathological processes such as aging (Yagi, 1987; Harman, 1982; Ames et al., 1993; Harman, 1995), cancer, coronary heart disease and alzheimer’s disease (Ames, 1983; Gey, 1990; Smith et al., 1996; Diaz et al., 1997). In addition to medicinal uses of antioxidants these compounds also possess lots of industrial applications such as preservatives in food and cosmetics and put off the degradation of rubber and gasoline. In food industries free radicals are found to be responsible for lipid oxidation that is a major determinant in the deterioration of foods during processing and storage (Nunez-Delicado et al., 1997; Chen and Ho, 1997). Due to this fact considerable interest has been shown to the addition of antioxidants in food and biological systems to scavenge free radicals.

Image for - Medicinal Plants as a Source of Antioxidants
Fig. 2: Natural antioxidant

Antioxidants which are widely used in the food industries since the beginning of this century are synthetic materials such as Butylated Hydroxyl Anisole (BHA), ethoxyquin, metabisulfite and Butylated Hydroxyl Toluene (BHT). The toxicological and nutrition studies showed that use of these synthetic antioxidants are toxic and harmful for human being, therefore the use of these synthetic antioxidant has started to be restricted and substituted by natural antioxidants (Bronen, 1975; Ito et al., 1983; Grice, 1986; Imida et al., 1983). Recently, various studies and research articles showed that some secondary metabolites such as flavonoids, phenolics and polyphenolics (condensed and hydrolysable tannins) demonstrate the potent antioxidative effectivity (Hagerman et al., 1998). Ascorbic acid (vitamin C), tocopherols and tocotrienols (vitamin E), melatonin and glutathione (Fig. 2) which are widely found in plant kingdom possess potent antioxidant properties. These plant materials may provide safe replacement for harmful and toxic synthetic antioxidants. Various studies indicated that there is an inverse relationship between the dietary intake of antioxidant rich foods and the incidence of human diseases (Sies, 1993; Halliwell, 1997). There are many epidemiological results revealing an association between people who have a diet rich in fresh fruits and vegetables and a decrease in the risk of cardiovascular diseases and certain forms of cancer. The natural antioxidants are beneficial for our health without any side effect and scavenge the free radical immediately after intake through metabolic activities. Thus, natural anti-oxidants are suitable substitute for synthetic ones. Pathology and mechanism of action of some representative group of antioxidant compounds is summarized in Table 2 and structure of some natural antioxidants are shown in Fig. 2.

Objective of the Review
Medicinal plants, as a group, comprise approximately 8000 species and account for about 50% of all the higher flowering plant species of India. India is one of the richest with vast resource of medicinal and aromatic plants. It constitutes 11% of total known world flora having medicinal property. Ayurveda has been in practice in India for more than 3500 years and the first recorded book on Ayurvedic medicine was Charaka Samhita dates back to 600 BC. The traditional healers have used this resource since time immemorial for the benefit of mankind. In this review article, we have summarized the plant species showing potent antioxidant activity with their family, active principles and traditional medicinal uses on the basis of the survey of literature (Table 3).

Table 2: Mechanism of action of various natural antioxidants
Image for - Medicinal Plants as a Source of Antioxidants

Table 3: Plant species showing potent antioxidant activity with their family, traditional medicinal uses and active principles
Image for - Medicinal Plants as a Source of Antioxidants

CONCLUSION

Forty four plants have been reviewed for their antioxidant properties. Flavanoids and tannins are potant antioxidants followed by ascorbic acid and alkaloids (Fig. 2). The mechanism of action of some of the identified natural antioxidants is known (Table 2) but as the active ingredients in many plants extract possessing antioxidant properties remains to be identified. The review clearly indicates that there is a great possibility of finding potent antioxidants of plant origin.

ACKNOWLEDGMENT

The authors pay their sincere thanks to UGC New Delhi, India [Grant No. F.4-3/2006(BSR)/11-84/2008(BSR)], for financial assistance.

REFERENCES

  1. Ahmed, E., M. Imran, A. Malik and M. Ashraf, 2006. Antioxidant activity with flavonoidal constituents from Aerva persica. Arch. Pharma. Res., 29: 343-347.
    PubMed  |  


  2. Ames, B.N., M.K. Shigenaga and T.M. Hagen, 1993. Oxidants, antioxidants and the degenerative diseases of aging. Proc. Nat. Acad. Sci. USA., 90: 7915-7922.
    Direct Link  |  


  3. Ames, B.N., 1983. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science, 221: 1256-1264.
    CrossRef  |  PubMed  |  Direct Link  |  


  4. Aruoma, A.M., M.J. Butler and B. Halliwell, 1993. Evaluation of the antioxidant and prooxidant actions of gallic acid and its derivatives. J. Agric. Food Chem., 41: 1880-1885.
    CrossRef  |  


  5. Benard, F.J. and R.T. Runner, 2004. Erythrinaline alkaloids from the flowers and pods of Erythrina lysistemon and their DPPH radical scavenging properties. Phytochemistry, 65: 1397-1404.
    CrossRef  |  


  6. Branen, A.L., 1975. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc., 52: 59-63.
    Direct Link  |  


  7. Burton, G.W. and K.U. Ingold, 1981. Autoxidation of biological molecules. 1. Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J. Am. Chem. Soc., 103: 6472-6477.
    CrossRef  |  


  8. Candeias, L.P., K.B. Patel, M.R.L. Stratford and P. Wardman, 1993. Free hydroxyl radicals are formed on reaction between the neutrophil-derived species superoxide anion and hypochlorous acid. FEBS Lett., 333: 151-153.
    PubMed  |  


  9. Cardador-Martinez, A., A. Arnulfo, B. Moustapha, C.S. Victor and C.T. Eduardo et al., 2006. Relationship among antimutagenic, antioxidant and enzymatic activities of methanolic extract from common beans (Phaseolus vulgaris L.). Plant Foods Hum. Nutr., 61: 161-168.


  10. Cartron, E., M.A. Carbonneau, G. Fouret, B. Descomps and C.L. Leger, 2001. Specific antioxidant activity of caffeoyl derivatives and other natural phenolic compounds: LDL protection against oxidation anddecrease in the proinflammatory lysophosphatidylcholine production. J. Nat. Prod., 64: 480-486.
    CrossRef  |  Direct Link  |  


  11. Chacha, M., G. Bojase-Moleta and R.R.T. Majinda, 2005. Antimicrobial and radical scavenging flavonoids from the stem wood of Erythrina latissima. Phytochemistry, 66: 99-104.
    Direct Link  |  


  12. Chen, H.J. and C.T. Ho, 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem., 45: 2374-2378.
    CrossRef  |  Direct Link  |  


  13. Murthy, K.N.C., G.K. Jayaprakasha and R.P. Singh, 2002. Studies on antioxidant activity of pomegranate (Punica granatum) peel extract using in vivo models. J. Agric. Food Chem., 50: 4791-4795.
    CrossRef  |  Direct Link  |  


  14. Das, A.K., S.C. Manda, S. Berneree, J. Das, B.P. Saha and M. Pal, 1999. Studies on antidiarrhoeal activity of Punica granathum seed extract in rats. J. Ethnopharm., 69: 305-308.


  15. De Sousa, E., L. Zanatta, I. Seifriz, T.B. Creczynski-Pasa, M.G. Pizzolatti, B. Szpoganicz and F.R.M.B. Silva, 2004. Hypoglycemic effect and antioxidant potential of kaempferol-3,7-O-(α)-dirhamnoside from Bauhinia forcata leaves. J. Nat. Prod., 67: 829-832.
    CrossRef  |  Direct Link  |  


  16. Diaz, M.N., B. Frei, J.A. Vita and J.F. Keaney, 1997. Antioxidants and atherosclerotic heart disease. N. Engl. J. Med., 337: 408-416.
    CrossRef  |  Direct Link  |  


  17. Dordevic, S., S. Petrovic, S. Dobric, M. Milenkovic, D. Vucicevic, S. Zizic and J. Kukie, 2007. Antimicrobial, anti-inflammatory, anti-ulcer and antioxidant activities of Carlina acanthifolia root essential oil. J. Ethnopharmacol., 109: 458-463.
    PubMed  |  


  18. Lechner, D., M. Stavri, M. Oluwatuyi, R. Pereda-Miranda and S. Gibbons, 2004. The anti-staphylococcal activity of Angelica dahurica (Bai Zhi). Phytochemistry, 65: 331-335.
    PubMed  |  


  19. Dwivedi, S., 2007. Terminalia arjuna Wight & Arn: A useful drug for cardiovascular disorders. J. Ethnopharmacol., 114: 114-129.
    CrossRef  |  Direct Link  |  


  20. Nunez-Delicado, E., A. Sanchez-Ferrer and F. Garcıa-Carmona, 1997. Cyclodextrins as secondary antioxidants: Synergism with ascorbic acid. J. Agric. Food Chem., 45: 2830-2835.
    CrossRef  |  


  21. Gentry, E.J., H.B. Jampani, A. Keshavarz-Shokri, M.D. Morton, D.V. Velde and H. Telikepalli et al., 1998. Antitubercular natural products: Berberine from the roots of commercial Hydrastis canadensis powder. Isolation of inactive 8-oxotetrahydrothalifendine, canadine, β-hydrastine and two new quinic acid esters. Hycandinic acid esters-1 and -2. J. Nat. Prod., 61: 1187-1193.
    PubMed  |  


  22. Gey, K.F., 1990. The antioxidant hypothesis of cardiovascular disease: Epidemiology and mechanisms. Biochem. Soc. Trans., 18: 1041-1045.
    PubMed  |  


  23. Govindarajan, R., M. Vijayakumar, C. Venkateshwara Rao, A. Shirwaikar, S. Mehrotra and P. Pushpangadan, 2004. Healing potential of Anogeissus latifolia for dermal wounds in rats. Acta Pharm., 54: 331-338.
    PubMed  |  


  24. Gray, A.I., P. Bhandari and P.G. Waterman, 1988. New protolimonoids from the fruits of Phellodendron chinense. Phytochemistry, 27: 1805-1808.
    CrossRef  |  


  25. Grice, H.C., 1986. Safety evaluation of butylated hydroxytoluene (BHT) in liver, lung and gastrointestinal tract. Food Chem. Toxicol., 24: 1127-1130.


  26. Gunasekera, S.P., I.A. Zuleta, R.E. Longley, A.E. Wright and S.A. Pomponi, 2003. Discorhabdins S, T and U, new cytotoxic pyrroloiminoquinones from a deep-water caribbean sponge of the genus Batzella. J. Nat. Prod., 66: 1615-1617.
    PubMed  |  


  27. Haber, F. and J.J. Weiss, 1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. Lond., 147: 332-351.
    Direct Link  |  


  28. Hagerman, A.E., K.M. Riedl, G.A. Jones, K.N. Sovik, N.T. Ritchard, P.W. Hartzfeld and T.L. Riechel, 1998. High molecular weight plant polyphenolics (Tannins) as biological antioxidants. J. Agric. Food Chem., 46: 1887-1892.
    CrossRef  |  Direct Link  |  


  29. Halliwell, B., J.M. Gutteridge and C.E. Cross, 1992. Free radicals, antioxidants and human disease: Where are we now? J. Lab. Clin. Med., 119: 598-620.
    PubMed  |  


  30. Haraguchi, H., H. Ishikawa and I. Kubo, 1997. Antioxidative action of diterpenoids from Podocarpus nagi. Planta Med., 63: 213-215.
    CrossRef  |  PubMed  |  Direct Link  |  


  31. Harman, D., 1995. Role of antioxidant nutrients in aging: Overview. Agents, 18: 51-62.
    CrossRef  |  Direct Link  |  


  32. Huang, Y.L., P.Y. Yeh, C.C. Shen and C.C. Chen, 2003. Antioxidant flavonoids from the rhizomes of Helminthostachys zeylanica. Phytochemistry, 64: 1277-1283.
    PubMed  |  


  33. Huong, N.T.T., K. Matsumoto, R. Karai, K. Yamasaki and W. Watanabe, 1998. In vitro antioxidant activity of vietnamese ginseng saponin and its components. Biol. Pharm. Bull., 21: 978-981.
    PubMed  |  


  34. Imida, K., S. Fukushima, T. Shival, M. Ohtani, K. Nakanishi and N. Ito, 1983. Promoting activities of BHA and BHT on 2-stage urinary bladder carcinogenesis and inhibition of α-glutamyl transpeptidase-positive foci development in the liver of rats. Carcinogenesis, 4: 885-889.


  35. Ito, N., S. Fukushima, A. Haqlwara, M. Shibata and T. Ogiso, 1983. Carcinogenicity of butylated hydroxyanisole in F344 rats. J. Natl. Cancer Inst., 70: 343-347.
    PubMed  |  Direct Link  |  


  36. Jong, T.T. and S.W. Chau, 1998. Antioxidative Activities of constituents Isolated from Pandanus odoratissimus. Phytochemistry, 49: 2145-2148.
    CrossRef  |  


  37. Jung, H.A., A.R. Kim, H.Y. Chung and J.S. Choi, 2002. In vitro antioxidant activity of some selected prunus species in Korea. Arch. Pharma. Res., 25: 865-872.
    PubMed  |  


  38. Jung, S.J., D.H. Kim, Y.H. Hong, J.H. Lee, H.N. Song, Y.D. Rho and N.I. Baek, 2007. Flavonoids from the flower of Rhododendron yedoense var. poukhanense and their antioxidant activities. Arch. Pharm. Res., 30: 146-150.
    PubMed  |  


  39. Kaur, G., M.S. Alam, Z. Jabbar, K. Javed and M. Athar, 2006. Evaluation of antioxidant activity of Cassia siamea flowers. J. Ethnopharmacol., 108: 340-348.
    CrossRef  |  Direct Link  |  


  40. Khanbabaee, K. and T. van Ree, 2001. Tannins: Classification and definition. Nat. Prod. Rep., 18: 641-649.
    CrossRef  |  PubMed  |  Direct Link  |  


  41. Kolak, U., M. Ozturk, F. Ozgokce and A. Ulubelen, 2006. Norditerpene alkaloids from Delphinium linearilobum and antioxidant activity. Phytochemistry, 67: 2170-2175.
    CrossRef  |  


  42. Kondo, S., M. Kittikorn and S. Kanlayanarat, 2005. Preharvest antioxidant activities of tropical fruit and the effect of low temperature storage on antioxidants and jasmonates. Postharvest Biol. Technol., 36: 309-318.
    CrossRef  |  Direct Link  |  


  43. Kottaimuthu, A., S. Sethupathy, R. Manavalan and P.K. Karar, 2007. Antioxidant activity of flavonoids isolated from Dolichos biflorus Linn. in rabbits fed high fat diet. Biosci. Biotechnol. Res. Asia, 4: 179-179.


  44. Lamarque, A.L., R.H. Fortunato and C.A. Guzman, 1998. Seed oil alkanes from leguminosae species: Evencarbon number preference. Phytochemistry, 49: 731-736.
    CrossRef  |  


  45. Laphookhieo, S., J.K. Syers, R. Kiattansakul and K. Chantrapromma, 2006. Cytotoxic and antimalarial prenylated xanthones from Cratoxylum cochinchinense. Chem. Pharma. Bull., 54: 745-747.
    PubMed  |  


  46. Lau, C.W., X.Q. Yao, Z.Y. Chen, W.H. Ko and Y. Huang, 2001. Cardiovascular actions of berberine. Cardiovasc. Drug Rev., 19: 234-244.
    CrossRef  |  PubMed  |  Direct Link  |  


  47. Lee, J.P., B.S. Min, R.B. An, M.K. Na and S.M. Lee et al., 2003. Stilbenes from the roots of Pleuropterus ciliinervis and their antioxidant activities. Phytochemistry, 64: 759-763.
    CrossRef  |  


  48. Levites, Y., O. Weinreb, G. Maor, M.B.H. Youdim and S. Mandel, 2001. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J. Neurochem., 78: 1073-1082.
    PubMed  |  


  49. Long, C.A. and B.H.J. Bielski, 1980. Rate of reaction of superoxide radical with chloride-containing species. J. Phys. Chem., 84: 555-557.


  50. Mangathayaru, K., K. Sravan, A.P.K. Reddy, R.M. Kumar, B. Swetha and C.U. Reddy, 2007. In vitro antioxidant studies of the aerial parts of Origanum majoram Linn and Artemesia sieversiana Ehrh. Pharmacogn. Mag., 3: 90-94.
    Direct Link  |  


  51. Moharram, F.A., M.S.A. Marzouk, M.T. Ibrahim and T.J. Mabry, 2006. Antioxidant galloylated flavonol glycosides from Calliandra haematocephala. Nat. Prod. Res., 20: 927-934.
    CrossRef  |  


  52. Govindarajan, R., M. Vijaykumar, C.V. Rao, A. Shirwaikar, A.K.S. Rawat, S. Mehrotra and P. Pushpangadan, 2004. Antioxidant potential of Anogeissus latifolia. Biol. Pharm. Bull., 27: 1266-1269.
    Direct Link  |  


  53. Nagatsu, A., K. Tenmaru, H. Matsuura, N. Murakami, T. Kobayashi, H. Okuyama and J. Sakakibara, 1995. Novel antioxidants from roasted Perilla seed. Chem. Pharma. Bull., 43: 887-889.
    PubMed  |  


  54. Nicholls, D.G. and S.L. Budd, 2000. Mitochondria and neuronal survival. Physiol. Rev., 80: 315-360.
    Direct Link  |  


  55. Okolow-Zubkowska, M.J. and H.A.O. Hill, 1982. An Alternative Mechanism for the Production of Hydroxyl Radicals by Stimulated Neutrophils. In: Biochemistry and Function of Phagocytes, Rossi, F. and P. Patriarca (Ed.). Plenum Press, New York, pp: 423-427


  56. Pang, Z.F., D. Strack, A. Baumert, R. Subramaniam and N.K. Gho et al., 2003. Antioxidant flavonoids from leaves of Polygonum hydropiper L. Phytochmistry, 62: 219-228.
    CrossRef  |  


  57. Petrus, A.J.A. and T.R. Seetharaman, 2005. Antioxidant flavone c-biosides from the aerial parts of Alternanthera pungens. Indian J. Pharm. Sci., 67: 187-193.
    Direct Link  |  


  58. Phuwapraisirisan, P., S. Udomchotphruet, S. Surapinit and S. Tip-Pyang, 2006. Antioxidant xanthones from Cratoxylum cochinchinense. Nat. Prod. Res., 20: 1332-1337.
    PubMed  |  


  59. Piao, X.L., H.I. Park, H.S. Beak, Y.H. Kim, M.K. Park and J.H. Park, 2004. Antioxidative activity of furanocoumarins isolated from Angelicae dahuricae. Ethnopharmacology, 93: 243-246.


  60. Qu, G.Z., C.L. Si and M.H. Wang, 2006. Antioxidant constituents from Leonurus japonicas. Nat. Prod. Sci., 12: 197-200.
    Direct Link  |  


  61. Radisky, D.C., E.S. Radisky, L.R. Barrows, B.R. Copp, R.A. Kramer and C.M. Ireland, 1993. Novel cytotoxic topoisomerase II inhibiting pyrroloiminoquinones from Fijian sponges of the genus Zyzzya. J. Am. Chem. Soc., 115: 1632-1638.
    CrossRef  |  


  62. Ramos, C.L., S. Pou, B.E. Britigan, M.S. Cohen and G.M. Rosen, 1992. Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. J. Biol. Chem., 267: 8307-8312.
    PubMed  |  Direct Link  |  


  63. Reanmongkol, W., K. Matsumoto, H. Watanabe, S. Subhadhirasakul and S. Sakai, 1994. Antinociceptive and antipyretic effects of alkaloids extracted from the stem bark of Hunteria zeylanica. Biol. Pharm. Bull., 17: 1345-1350.
    PubMed  |  


  64. Rush, J.D. and W.H. Koppenol, 1986. Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. Reactions with organic molecules and ferrocytochrome C. J. Biol. Chem., 261: 6730-6733.
    Direct Link  |  


  65. Sati, O.P. and G. Pant, 1985. Steroidal glycosides from asparagus plumosus. Phytochemistry, 24: 123-126.


  66. Sati, O.P. and G. Pant, 1985. New furostanol glycosides from Asparagus plumosus leaves. J. Nat. Prod., 48: 390-394.
    CrossRef  |  


  67. Sati, O.P. and S.C. Sharma, 1985. New stroidal glycosides from Asparagus curillus (roots). Pharmazie, 40: 417-417.


  68. Sati, O.P., G. Pant and K. Hostettmann, 1984. Potent molluscicides from Asparagus. Pharmazie, 39: 581-581.
    PubMed  |  


  69. Sati, O.P., G. Pant, T. Nohara and A. Sato, 1985. Cytotoxic saponins from asparagus and Agave. Pharmazie, 40: 586-586.
    PubMed  |  


  70. Seazzocchio, F., M.F. Cometa, L. Tomassini and M. Palmery, 2001. Antibacterial activity of Hydrastis canadensis extract and its major isolated alkaloids. Planta Med., 67: 561-564.
    PubMed  |  


  71. Sevda, S., H. Ali Mericlia and J.H.B. Peter Cubukcua, 2005. Flavonoids of Helichrysum compactum and their antioxidant and antibacterial activity. Fitoterapia, 76: 269-272.
    CrossRef  |  


  72. Sharma, S.C., R. Chand, B.S. Bhatti and O.P. Sati, 1982. New oligospirostanosides and oligofurostanosides from asparagus adscendens roots. Planta Medica, 46: 48-51.
    PubMed  |  


  73. Sharma, S.C., O.P. Sati and R. Chand, 1983. Steroidal saponins from Asparagus curillus fruits. Planta Med., 47: 117-120.
    PubMed  |  


  74. Shirwaikar, A., K. Rajendran and C.D. Kumar, 2004. In vitro antioxidant studies of Annona squamosa Linn. leaves. Indian Exp. Biol., 42: 803-807.
    PubMed  |  


  75. Sies, H., 1997. Oxidative stress: Oxidants and antioxidants. Exp. Physiol., 82: 291-295.
    CrossRef  |  PubMed  |  Direct Link  |  


  76. Silva, B.A., F. Ferreres, J.O. Malva and A.C.P. Dias, 2005. Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem., 90: 157-167.
    CrossRef  |  


  77. Singh, G., P. Marimuthu, M.P. de Lampasona and C.A.N. Catalan, 2006. Cuminum cyminum L. chemicalconstituents antioxidant and antifungal studies on its volatile oil and acetone extract. Indian Perfumer, 50: 31-39.


  78. Singh, R.P., B. Padmavathi and A.R. Rao, 2000. Modulatory influence of Adhatoda vesica (Justicia adhatoda) leaf extract on the enzymes of xenobiotic metabolism, antioxidant status and lipid peroxidation in mice. Mol. Cell Biochem., 213: 99-109.
    CrossRef  |  PubMed  |  


  79. Smith, M.A., G. Perry, P.L. Richey, L.M. Sayre, V.E. Anderson, M.F. Beal and N. Kowall, 1996. Oxidative damage in Alzheimer's. Nature, 382: 120-121.
    CrossRef  |  Direct Link  |  


  80. Souri, E., G. Amin, H. Farsom and S. Andaji, 2004. The antioxidant activity of some commonly used vegetables in Iranian diet. Fitoterapia, 75: 585-588.
    CrossRef  |  Direct Link  |  


  81. Suda, T., K. Ohshima, S. Kawakishi and T. Osawa, 1994. Antioxidative pigments isolated from the seeds of Phaseolus vulgaris L. J. Agric. Food Chem., 42: 248-251.
    CrossRef  |  


  82. Suga, A., Y. Takaishi, S. Goto, T. Munakata, I. Yamauchi and K. Kogure, 2003. Two lignan dimers from bamboo stems (Phyllostachys edulis). Phytochemistry, 64: 991-996.
    PubMed  |  


  83. Sundquist, E.A., K. Briviba and H. Sies, 1994. Singlet oxygen quenching by carotenoids. Methods Enzymol., 234: 354-366.


  84. Tabanca, N., R.S. Pawar, D. Ferreira, J.P.J. Marais and S.I. Khan et al., 2007. Flavan-3-ol-phenylpropanoid conjugates from Anemopaegma arvense and their antioxidant activities. Planta Medica, 73: 1107-1111.
    PubMed  |  


  85. Tegischer, K., M. Tausz, G. Wieser and D. Grill, 2002. Tree- and needle-age-dependent variations in antioxidants and photoprotective pigments in Norway spruce needles at the alpine timberline. Tree Physiol., 22: 591-596.
    Direct Link  |  


  86. Osawa, T., H. Katsuzaki, Y. Hagiwara, H. Hagiwara and T. Shibamoto, 1992. A novel antioxidant isolated from young green barley leaves. J. Agric. Food Chem., 40: 1135-1138.
    Direct Link  |  


  87. Tripathi, Y.B. and A.K. Upadhyay, 2002. Effect of the alcohol extract of the seeds of Mucuna pruriens on free radicals and oxidative stress in albino rats. Phytother. Res., 16: 534-538.
    PubMed  |  


  88. Valecha, N., S. Biswas, V. Badoni, K.S. Bhandari and O.P. Sati, 1994. Antimalarial activity of Artemisia japonica, Artemisia maritima and Artemisia nilegirica. Indian J. Pharmacol., 26: 144-146.
    Direct Link  |  


  89. Valko, M., D. Leibfritz, J. Moncol, M.T.D. Cronin, M. Mazur and J. Telser, 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 39: 44-84.
    CrossRef  |  PubMed  |  Direct Link  |  


  90. Velavan, S., K. Nagulendran, R. Mahesh and V.H. Begum, 2007. In vitro antioxidant activity of Asparagus racemosus root. Pharmacogn. Mag., 3: 26-33.
    Direct Link  |  


  91. Vertuani, S., A. Angusti and S. Manfredini, 2004. The antioxidants and pro-antioxidants network: An overview. Curr. Pharm. Des., 10: 1677-1694.
    PubMed  |  


  92. Wang, K.J. and N. Li, 2007. Antioxidant phenolic compounds from rhizomes of Curculigo crassifolia. Arch. Pharma. Res., 30: 8-12.
    PubMed  |  


  93. Winterbourn, C.C., 1987. The ability of scavengersto distinguish OH• production in the iron catalyzed Haber-Weiss reaction: Comparison of four assays for OH. Free Radical Biol. Med., 3: 33-39.
    PubMed  |  


  94. Yagi, K., 1987. Lipid peroxides and human diseases. Chem. Physiol. Lipids, 45: 337-351.
    CrossRef  |  Direct Link  |  


  95. Yamaguchi, L.F., J.H.G. Lago, T.M. Tanizaki, P.D. Mascio and M.J. Kato, 2006. Antioxidant activity of prenylated hydroquinone and benzoic acid derivatives from Piper crassinervium Kunth. Phytochemistry, 67: 1838-1843.
    CrossRef  |  


  96. Yen, G.C., S.C. Wu and P.D. Duh, 1996. Extraction and identification of antioxidant components from the leaves of mulberry (Morus alba L.). J. Agric. Food Chem., 44: 1687-1690.
    CrossRef  |  Direct Link  |  


  97. Zhang, X.F., P.T. Thuong, B.S. Min, T.M. Ngoc and T.M. Hung et al., 2006. Phenolic glycosides with antioxidant activity from the stem bark of Populus davidiana. J. Nat. Prod., 69: 1370-1373.
    PubMed  |  


  98. Halliwell, B., 1997. Antioxidants in Disease Mechanisms and Therapy. In: Advances in Pharmacology, Seis, H. (Ed.). Vol. 38, Academic Press, New York, USA., pp: 3-17


  99. Harman, D., 1982. The Free-Radical Theory of Aging. In: Free Radicals in Biology, Pryor, W.A. (Ed.). Vol. 5, Chapter 8, Academic Press, Orlando


  100. Ranilla, L.G., M.I. Genovese and F.M. Lajolo, 2007. Polyphenols and antioxidant capacity of seed coat and cotyledon from Brazilian and peruvian bean cultivars (Phaseolus vulgaris L.). J. Agric. Food Chem., 55: 90-98.
    CrossRef  |  Direct Link  |  


  101. Sies, H., 1993. Strategies of antioxidant defence. Eur. J. Biochem., 215: 213-219.
    CrossRef  |  


©  2022 Science Alert. All Rights Reserved