Subscribe Now Subscribe Today
Review Article
 

Sonochemical Method Preparation of Nanosized Systems Based on Oxides of Zn, Ce and Mo



Valery Zazhigalov, Olena Sachuk and Volodymyr Starchevskyy
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

The influence of sonochemical treatment on the physico-chemical properties of oxide systems ZnO/CeO2, ZnО/MoO3 and CeO2/MoO3 were investigated and changes in crystalline structure, morphology and phase transformation was established. It was found that as a result of the treatment the formation of triclinic modification of zinc molybdate α-ZnMoO4, grinding of the oxides and increase of specific surface area of the compositions occurs. The results of catalytic activity of activated samples in ethanol oxidation reaction demonstrate the high selectivity and yield of acetic aldehyde (94%) at low reaction temperature. The blue shift of edge absorption in powder-like samples and band-gap energy (Eg) increase were fixed by UV-vis spectroscopy. It was found that activated samples show the promising results in dyes photodegradation processes of water solution at visible light irradiation.

Services
Related Articles in ASCI
Search in Google Scholar
View Citation
Report Citation


REFERENCES

1:  Chatel, G., 2018. How sonochemistry contributes to green chemistry? Ultrasonics Sonochem., 40,: 117-122.
CrossRef  |  Direct Link  |  

2:  Bang, J.H. and K.S. Suslick, 2010. Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater., 22: 1039-1059.
CrossRef  |  Direct Link  |  

3:  Mason, T.J. and T.P. Lorimer, 2003. Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing. Wiley-VCH, Weinheim, ISBN: 978-3-527-60054-0, Pages: 293

4:  Shevchuk, L. and V. Starchevskyy, 2014. Cavitation. Physical, Chemical, Biological and Technological Aspects. Lviv Polytechnic Publishing House, Lviv, Pages: 376, (In Ukrainian)

5:  Leong, T., M. Ashokkumar and S. Kentish, 2011. The fundamentals of power ultrasound-A review. Acoustics Aust., 39: 43-63.
Direct Link  |  

6:  Margulis, M., 1984. Bases of Sonochemistry. Higher School Publishing House, Moscow, Pageds: 272, (In Russian)

7:  Linares, P., F. Lazaro, M.D.L. de Castro and M. Valcarcel, 1988. Analytical sonochemistry: A review. J. Anal. Methods Chem., 10: 88-94.
Direct Link  |  

8:  Pirsol, I., 1975. Cavitation. Mir, Moscow, Pages: 95, (In Russian)

9:  Kumar, R.V., Y. Koltypin, X.N. Xu, Y. Yeshurun, A. Gedanken and I. Felner, 2001. Fabrication of magnetite nanorods by ultrasound irradiation. J. Applied Phys., 89: 6324-6328.
CrossRef  |  Direct Link  |  

10:  Jeevanandam, P., Y. Koltypin and A. Gedanken, 2001. Synthesis of nanosized α-nickel hydroxide by a sonochemical method. Nano Lett., 1: 263-266.
CrossRef  |  Direct Link  |  

11:  Avivi, S., Y. Mastai, G. Hodes and A. Gedanken, 1999. Sonochemical hydrolysis of Ga3+ ions: Synthesis of scroll-like cylindrical nanoparticles of gallium oxide hydroxide. J. Am. Chem. Soc., 121: 4196-4199.
CrossRef  |  Direct Link  |  

12:  Avivi, S., Y. Mastai and A. Gedanken, 2000. Sonohydrolysis of In3+ ions: Formation of needlelike particles of indium hydroxide. Chem. Mater., 12: 1229-1233.
CrossRef  |  Direct Link  |  

13:  Shafi, K.V.P.M., I. Felner, Y. Mastai and A. Gedanken, 1999. Olympic ring formation from newly prepared barium hexaferrite nanoparticle suspension. J. Phys. Chem. B, 103: 3358-3360.
CrossRef  |  Direct Link  |  

14:  Mao, C.J., H.C. Pan, X.C. Wu, J.J. Zhu and H.Y. Chen, 2006. Sonochemical route for self-assembled V2O5 bundles with spindle-like morphology and their novel application in serum albumin sensing. J. Phys. Chem. B, 110: 14709-14713.
CrossRef  |  Direct Link  |  

15:  Jeevanandam, P., Y. Diamant, M. Motiei and A. Gedanken, 2001. The effect of ultrasound irradiation on polycrystalline MoO3. Phys. Chem. Chem. Phys., 3: 4107-4112.
CrossRef  |  Direct Link  |  

16:  Chen, J.J., H.B. Yang, L.X. Chang, W.Y. Fu, Y. Zeng, H.Y. Zhu and G.T. Zou, 2007. Sonochemical preparation and characterization of photochromic MoO3 nanoparticles. Front. Phys. China, 2: 92-95.
CrossRef  |  Direct Link  |  

17:  Bin, L., Y. Daheng, C. Jiuju, Y. Xiaolei and M. Qinggang, 2011. Sonochemical preparation and characterization of MoO3 and MoS2 nanoparticles. Proceedings of the International Conference on Management Science and Industrial Engineering (MSIE), January 8-11, 2011, Harbin, China, pp: 1083-1086
CrossRef  |  Direct Link  |  

18:  Krishnan, C.V., J. Chen, C. Burger and B. Chu, 2006. Polymer-assisted growth of molybdenum oxide whiskers via a sonochemical process. J. Phys. Chem. B, 110: 20182-20188.
CrossRef  |  Direct Link  |  

19:  Manivel, A., G.J. Lee, C.Y. Chen, J.H. Chen, S.H. Ma, T.L. Horng and J.J. Wu, 2015. Synthesis of MoO3 nanoparticles for azo dye degradation by catalytic ozonation. Mater. Res. Bull., 62: 184-191.
CrossRef  |  Direct Link  |  

20:  Pholnak, C., C. Sirisathitkul, S. Suwanboon and D.J. Harding, 2014. Effects of precursor concentration and reaction time on sonochemically synthesized ZnO nanoparticles. Mater. Res., 17: 405-411.
CrossRef  |  Direct Link  |  

21:  Costa, B.C., C. Morilla-Santos and P.N. Lisboa-Filho, 2015. Effects of time exposure and low power sonochemical treatment on ZnO mesostructures. Mater. Sci. Semicond. Process., 35: 81-89.
CrossRef  |  Direct Link  |  

22:  Arruda, L.B., M.O. Orlandi and P.N. Lisboa-Filho, 2013. Morphological modifications and surface amorphization in ZnO sonochemically treated nanoparticles. Ultrason. Sonochem., 20: 799-804.
CrossRef  |  Direct Link  |  

23:  Kandjani, A.E., M.F. Tabriz and B. Pourabbas, 2008. Sonochemical synthesis of ZnO nanoparticles: The effect of temperature and sonication power. Mater. Res. Bull., 43: 645-654.
CrossRef  |  Direct Link  |  

24:  Tabatabee, M., R. Shaikhalishahi and R. Mohammadinasab, 2015. Sonochemical preparation and characterization of CeO2 nanoparticles using polyethylene glycols as a neutral surfactant. Res. Chem. Intermed., 41: 113-116.
CrossRef  |  Direct Link  |  

25:  Zhang, D., H. Fu, L. Shi, C. Pan, Q. Li, Y. Chu and W. Yu, 2007. Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol. Inorg. Chem., 46: 2446-2451.
CrossRef  |  Direct Link  |  

26:  Wang, H., J.J. Zhu, J.M. Zhu, X.H. Liao, S. Xu, T. Ding and H.Y. Chen, 2002. Preparation of nanocrystalline ceria particles by sonochemical and microwave assisted heating methods. Phys. Chem. Chem. Phys., 4: 3794-3799.
CrossRef  |  Direct Link  |  

27:  Alammar, T., H. Noei, Y. Wang, W. Grünert and A.V. Mudring, 2015. Ionic liquid-assisted sonochemical preparation of CeO2 nanoparticles for CO oxidation. ACS Sustainable Chem. Eng., 3: 42-54.
CrossRef  |  Direct Link  |  

28:  Sachuk, O., N. Kopachevska, L. Kuznetsova, V. Zazhigalov and V. Starchevskyy, 2017. Influence of ultrasonic treatment on the properties of ZnO-MoO3 oxide system. Chem. Chem. Technol., 11: 152-157.
CrossRef  |  Direct Link  |  

29:  Zazhigalov, V.A., O.V. Sachuk, N.S. Kopachevska, V.L. Starchevskyy and Z. Sawlowicz, 2017. Effect of ultrasonic treatment on formation of nanodimensional structures in ZnO-MoO3 system. Theor. Exp. Chem., 53: 53-59.
CrossRef  |  Direct Link  |  

30:  Keereeta, Y., T. Thongtem and S. Thongtem, 2014. Effect of medium solvent ratios on morphologies and optical properties of α-ZnMoO4, β-ZnMoO4 and ZnMoO4• 0.8H2O crystals synthesized by microwave-hydrothermal/solvothermal method. Superlattices Microstruct., 69: 253-264.
CrossRef  |  Direct Link  |  

31:  Ait ahsaine, H., M. Zbair, M. Ezahri, A. Benlhachemi and M. Arab et al., 2015. Rietveld refinements, impedance spectroscopy and phase transition of the polycrystalline ZnMoO4 ceramics. Ceramics Int., 41: 15193-15201.
CrossRef  |  Direct Link  |  

32:  Agarwal, D.C., D.K. Avasthi, S. Varma, F. Kremer, M.C. Ridgway and D. Kabiraj, 2014. Phase transformation of ZnMoO4 by localized thermal spike. J. Applied Phys., Vol. 115, No. 16.
CrossRef  |  Direct Link  |  

33:  Karekar, S.E., B.A. Bhanvase, S.H. Sonawane, M.P. Deosarkar, D.V. Pinjari and A.B. Pandit, 2015. Synthesis of zinc molybdate and zinc phosphomolybdate nanopigments by an ultrasound assisted route: Advantage over conventional method. Chem. Eng. Process.: Process Intensif., 87: 51-59.
CrossRef  |  Direct Link  |  

34:  Zhang, G., S. Yu, Y. Yang, W. Jiang, S. Zhang and B. Huang, 2010. Synthesis, morphology and phase transition of the zinc molybdates ZnMoO4• 0.8H2O/α-ZnMoO4/ZnMoO4 by hydrothermal method. J. Crystal Growth, 312: 1866-1874.
CrossRef  |  Direct Link  |  

35:  Sachuk, O.V., V.O. Zazhigalov, L.S. Kuznetsova and M.M. Tsyba, 2016. Properties of Zn-Mo oxide system synthesized by mechanochemical treatment. Chem. Phys. Technol. Surf., 7: 309-321.
CrossRef  |  Direct Link  |  

36:  Zazhigalov, V.А., K. Wieczorec-Ciurowa, Е.V. Sachuk, Е.А. Diyuk and I.V. Bacherikova, 2018. Mechanochemical synthesis of nanodispersed molybdenum oxide catalysts. Theor. Exp. Chem., 54: 225-234.

37:  Zazhigalov, V.А., Е.V. Sachuk, N.S. Kopachevskaya, I.V. Bacherikova, K. Wieczorec-Ciurowa and S.N. Shcherbakov, 2016. Mechanochemical synthesis of nanodispersed compounds in the ZnO-MoO3 system. Theor. Exp. Chem., 52: 97-103.

38:  Chiang, T.H. and H.C. Yeh, 2013. The synthesis of α-MoO3 by ethylene glycol. Materials, 6: 4609-4625.
CrossRef  |  Direct Link  |  

39:  Irmawati, R. and M. Shafizah, 2009. The production of high purity hexagonal MoO3 through the acid washing of as-prepared solids. Int. J. Basic Applied Sci., 9: 34-36.
Direct Link  |  

40:  Cavalcante, L.S., E. Moraes, M.A.P. Almeida, C.J. Dalmaschio and N.C. Batista et al., 2013. A combined theoretical and experimental study of electronic structure and optical properties of β-ZnMoO4 microcrystals. Polyhedron, 54: 13-25.
CrossRef  |  Direct Link  |  

41:  Talam, S., S.R. Karumuri and N. Gunnam, 2012. Synthesis, characterization and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol.,.
CrossRef  |  Direct Link  |  

42:  Mancheva, M., R. Iordanova, A.A. Kamenova, A. Stoyanova, Y. Dimitriev and B. Kunev, 2007. Influence of mechanical treatment on morphology of the MoO3 nanocrystals. Nanosci. Nanotechnol., 7: 74-76.

43:  Rana, P.H. and P.A. Parikh, 2017. Bioethanol valorization via its gas phase oxidation over Au &/or Ag supported on various oxides. J. Ind. Eng. Chem., 47: 228-235.
CrossRef  |  Direct Link  |  

44:  Yoshitake, H., Y. Aoki and S. Hemmi, 2006. Mesoporous titania supported-molybdenum catalysts: The formation of a new mesophase and use in ethanol-oxygen catalytic reactions. Microporous Mesoporous Mater., 93: 294-303.
CrossRef  |  Direct Link  |  

45:  Yang, J.I., D.W. Lee, J.H. Lee, J.C. Hyun and K.Y. Lee, 2000. Selective and high catalytic activity of CsnH4-nPMo11VO40 (n≥ 3) for oxidation of ethanol. Applied Catal. A: Gen., 194: 123-127.
CrossRef  |  Direct Link  |  

46:  Gonçalves, F.M., P.R. Medeiros and L.G. Appel, 2001. The role of cerium in the oxidation of ethanol over SnO2-supported molybdenum oxides. Applied Catal. A: Gen., 208: 265-270.
CrossRef  |  Direct Link  |  

47:  Eckert, M., G. Fleischmann, R. Jira, H. Bolt and K. Golka, 2006. Acetaldehyde. In: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH (Eds.)., Wiley‐VCH Verlag GmbH & Co. KGaA., Weinheim

48:  Kopachevska, N., S. Khalameida and V. Zazhigalov, 2015. Mechanochemical activation of molybdenum containing catalysts. CP., 24: 1-12.

49:  Sidorchuk, V.V., S.V. Khalameida, N.S. Litvin and V.A. Zazhigalov, 2010. Vanadium- and molybdenum-containing compositions prepared by mechanochemical and following thermal treatments of V2O5/(NH4)2Mo2O7 (V/Mo = 0.7/0.3). Russian J. Inorg. Chem., 55: 848-856.
CrossRef  |  Direct Link  |  

50:  Litvin, S.N., 2011. Mechanochemistry of complex oxide systems based on molybdenum and vanadium. Ph.D. Thesis, Institute for Sorption and Problems of Endoecology of NAS of Ukraine, Kyiv.

51:  Sachuk, O.V., 2019. Nanodispersed Zn-MoO3 catalysts of selective ethanol oxidation synthesized by nontraditional methods. Dopov. Nac. Akad. Nauk Ukr., 6: 48-53, (In Ukrainian).
CrossRef  |  Direct Link  |  

52:  Zazhigalov, V.A., O.V. Sachuk, O.A. Diyuk, V.L. Starchevskyy and S.V. Kolotilov et al., 2018. The Ultrasonic Treatment as a Promising Method of Nanosized Oxide CeO2-MoO3 Composites Preparation. In: Nanochemistry, Biotechnology, Nanomaterials and Their Applications, NANO 2017. Proceedings in Physics, Vol. 214, Fesenko, O. and L. Yatsenko (Eds.)., Springer, Cham, pp: 297-309

53:  Sobhani-Nasab, A., M. Maddahfar and S.M. Hosseinpour-Mashkani, 2016. Ce(MoO4)2 nanostructures: Synthesis, characterization and its photocatalyst application through the ultrasonic method. J. Mol. Liq., 216: 1-5.
CrossRef  |  Direct Link  |  

54:  Sohn, J.R., E.W. Chun and T.I. Pae, 2003. Spectroscopic studies on ZrO2 modified with MoO3 and activity for acid catalysis. Bull. Korean Chem. Soc., 24: 1785-1792.
CrossRef  |  Direct Link  |  

55:  Seguin, L., M. Figlarz, R. Cavagnat and J.C. Lassègues, 1995. Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3 • xH2O molybdenum trioxide hydrates. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 51: 1323-1344.
CrossRef  |  Direct Link  |  

56:  Epifani, M., P. Imperatori, L. Mirenghi, M. Schioppa and P. Siciliano, 2004. Synthesis and characterization of MoO3 thin films and powders from a molybdenum chloromethoxide. Chem. Mater., 16: 5495-5501.
CrossRef  |  Direct Link  |  

57:  Rathod, S.B., M.K. Lande, B.R. Arbad and A.B. Gambhire, 2014. Preparation, characterization and catalytic activity of MoO3/CeO2–ZrO2 solid heterogeneous catalyst for the synthesis of β-enaminones. Arabian J. Chem., 7: 253-260.
CrossRef  |  Direct Link  |  

58:  Solsona, B., V.A. Zazhigalov, J.L. Nieto, I.V. Bacherikova and E.A. Diyuk, 2003. Oxidative dehydrogenation of ethane on promoted VPO catalysts. Applied Catal. A: Gen., 249: 81-92.
CrossRef  |  Direct Link  |  

59:  Sachuk, O., V. Zazhigalov, L. Kuznetsova and S. Shcherbakov, 2017. The influence of mechanochemical activation on the Zn-Ce-O composition properties. Adsorption Sci. Technol., 35: 845-852.
CrossRef  |  Direct Link  |  

60:  Sachuk, O.V., V.A. Zazhigalov, O.P. Fedorovska, L.S. Kuznetsova and S.M. Shcherbakov, 2016. Mechanochemical activation influence of the ZnO/CeO2 compositions on their structural characteristics and photocatalytic activity in safranin T degradation process. Catal. Petrochem., 25: 36-40.

61:  Trovarelli, A., 1996. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev., 38: 439-520.
CrossRef  |  Direct Link  |  

©  2022 Science Alert. All Rights Reserved