Subscribe Now Subscribe Today
Research Article

Histopathological Studies of Eggplant Roots as Affected by IAA, Agrobacterium tumefaciens and Meloidogyne incognita Alone and in Combinations

Mohamed A. Elwakil , Z.A. Mohamed and A.G.El-Sherif
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail

The anatomy of eggplant roots as affected by the application of IAA, Agrobacterium tumefaciens and Meloidogyne incognita alone and in combination was studied. IAA and A. tumefaciens, alone and in combination increased the root diameter, cortex thickness, number of cortex layers, stele diameter, number of xylem vessels but decreased the vessel diameter. Inoculation with M. incognita led to the formation of multinucleated giant cells surrounded by deformed xylem elements, hypertrophy of the cortex and hyperplasia of the pericycle. More giant cells with higher dimensions were formed and more eggs/egg mass were produced in plants where IAA, A. tumefaciens alone or in combination was introduced with M. incognita. On the other hand, the presence of IAA, A. tumefaciens or their combination extended the life-span of giant cells, providing long-lasting feeding sites for the nematode. The auxin-mediated role of A. tumefaciens in development and reproduction of M. incognita was discussed.

Related Articles in ASCI
Search in Google Scholar
View Citation
Report Citation

  How to cite this article:

Mohamed A. Elwakil , Z.A. Mohamed and A.G.El-Sherif , 2003. Histopathological Studies of Eggplant Roots as Affected by IAA, Agrobacterium tumefaciens and Meloidogyne incognita Alone and in Combinations. Plant Pathology Journal, 2: 1-9.

DOI: 10.3923/ppj.2003.1.9



1:  Barazani, O. and J. Friedman, 1999. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria. J. Chem. Ecol., 25: 2397-2406.
CrossRef  |  Direct Link  |  

2:  Blakely, L.M., S.J. Rodaway, L.B. Hollen and S.G. Croker, 1972. Control and kinetics of branch root formation in cultured root segments of Haplopappus ravenii. Plant Physiol., 50: 35-42.

3:  Ekanayake, H.M.R., M.D. Vito and N. Vovlus, 1988. Histopathological changes caused by Meloidogyne incognita on tomato and eggplant roots. Trop. Agric., 144: 89-97.

4:  El-Sherif, A.G. and M.A. Elwakil, 1991. Interaction between Meloidogyne incognita and Agrobacterium tumefaciens or Fusarium oxysporum f. sp. lycopersici on tomato. J. Nematol., 23: 239-242.
PubMed  |  

5:  Fakhouri, W.D., H. Khlaif and W.I. Abu-Gharbieh, 1996. Interaction between Meloidogyne javanica and Agrobacterium tumefaciens on tomato plants. Pak. J. Nematol., 14: 49-54.

6:  Gaudin, V. and L. Jouanin, 1995. Expression of Agrobacterium rhizogenes auxin biosynthesis genes in transgenic tobacco plants. Plant Mol. Biol., 28: 123-136.

7:  Goodey, J.B., 1957. Laboratory methods for work with plant and soil nematodes. Technical Bulletin No. 2, Ministry of Agriculture Fish and Food, London, UK., pp: 1-47.

8:  Hazarika, B.P. and A.K. Roy, 1974. Effect of Rhizoctonia solani on the reproduction of Meloidogyne incognita on eggplant. Indian J. Nematol., 4: 246-248.
Direct Link  |  

9:  Hutangura, P., U. Mathesius, M.G.K. Jones and B.G. Rolfe, 1999. Auxin induction is a trigger for root gall formation caused by root-knot nematodes in white clover and is associated with the activation of the flavonoid pathway. Aust. J. Plant Physiol., 26: 221-231.

10:  Kunieda-Alonso, S., J.M. dos Santos, A.C. Alfenas and S. Ferraz, 1999. Pathogenicity of Meloidogyne javanica (Treub) chitwood to ipeamarelo, Tabebuia serratifolia Nichols. Revista Arvore, 23: 479-485.

11:  Mathur, A. and R.K. Sharma, 1998. Studies on the effect of auxins on the nucleic acid contents of normal and nematode induced root gall tissues of Lycopersicon esculentum Mill. in culture. J. Phytol. Res., 11: 183-185.

12:  Mohamed, Z.A., A.G. El-Sherif and M.A. Elwakil, 1993. Anatomical changes in tobacco roots due to the infection with Meloidogyne incognita and/or Agrobacterium tumefaciens. J. Agric. Sci. Mansoura Univ., 18: 1387-1394.

13:  Naqvi, S.Q.A. and M.M. Alam, 1975. Influence of brinjal mosaic virus in the population of Tylenchorhynchus brassicae and Rotylenchulus reniformis around eggplant roots. Geobios, 2: 120-121.

14:  O`Brien, T. and M. McCully, 1981. The Study of Plant Structures: Principle and Selected Methods. Termacartphi Pvt. Ltd., Melbourne

15:  Pasha, M.J., Z.A. Siddiqui, M.W. Khan and S.I. Qureshi, 1987. Histopathology of eggplant roots infected with root-knot nematode, Meloidogyne incognita. Pak. J. Nematol., 5: 27-34.

16:  Pasqua, G., B. Monacelli, A. Silvestrini and R. Manganaro, 2001. In vitro root differentiation and essential-oil accumulation in Angelica archangelica. In vitro Cell. Dev. Biol. Plant, 37: 763-766.

17:  Pavlova, Z.B., N.V. Malyshev, L.V. Kravchenko, V. Chmelev and L.A. Lutova, 1998. Response of pea (Pisum sativum L.) genotypes to Agrobacterium as a means of probing tbeir endogenous hormone levels. Plant Sci., 133: 167-176.

18:  Rubio-Cabetas, M.J., J.C. Minot, R. Voisin and D. Esmenjaud, 2001. Interaction of root-knot nematode (RKN) and the bacterium Agrobacterium tumefaciens in roots of Prunus cerasifera: Evidence of the protective effect of the Ma RKN resistance genes against expression of crown ga. Eur. J. Plant Pathol., 107: 433-441.

19:  Sabir, N., 2001. Some observations on histopathological changes in the roots of papaya (Carica papaya L.) infested with Meloidogyne javanica. Indian J. Nematol., 31: 177-178.

20:  Smith, M.A.L., M.T. McClelland and R. Timmermann, 1991. Anomalous root structure on woody plants in vitro. J. Environ. Hortic., 9: 61-64.

21:  Sule, S., J. Lehoczky, G. Jenser, P. Nagy and T.J. Burr, 1995. Infection of grapevine roots by Agrobacterium vitis and Meloidogyne hapla. J. Phytopathol., 143: 169-171.

22:  Ullrich, C.I. and R. Aloni, 2000. Vascularization is a general requirement for growth of plant and animal tumours. J. Exp. Bot., 51: 1951-1960.

©  2021 Science Alert. All Rights Reserved