• [email protected]
  • +971 507 888 742
Submit Manuscript
SciAlert
  • Home
  • Journals
  • Information
    • For Authors
    • For Referees
    • For Librarian
    • For Societies
  • Contact
  1. Pakistan Journal of Nutrition
  2. Vol 15 (4), 2016
  3. 352-358
  • Online First
  • Current Issue
  • Previous Issues
  • More Information
    Aims and Scope Editorial Board Guide to Authors Article Processing Charges
    Submit a Manuscript

Pakistan Journal of Nutrition

Year: 2016 | Volume: 15 | Issue: 4 | Page No.: 352-358
DOI: 10.3923/pjn.2016.352.358
crossmark

Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
Research Article

Effects of Calcium (Ca) and Manganese (Mn) Supplementation During Oil Palm Frond Fermentation by Phanerochaete chrysosporium on In vitro Digestibility and Rumen Fluid Characteristics

Dewi Febrina, Novirman Jamarun, Mardiati Zain and Khasrad

ABSTRACT


The objectives of the study were to evaluate the effects of calcium and manganese supplementation during oil palm frond fermentation by Phanerochaete chrysosporium on in vitro digestibility and rumen fluid characteristics. This research used a Completely Randomized Design comprising two factors as treatments and each treatment was repeated three times. The factors were Ca dose (1.000, 2.000 and 3.000 ppm) and Mn dose (50, 100 and 150 ppm). The data were analyzed using analysis of variance to measure the differences among treatments; Duncan's Multiple Range Test was used to determine the significance of differences. The parameters measured were as follows: digestibility of dry matter (%), organic matter (%), Neutral Detergent Fibre (NDF) (%), Acid Detergent Fibre (ADF) (%), cellulose (%) and hemicellulose (%). The rumen fluid characteristics considered included the following: pH and the concentrations of NH3 (mM) and Volatile Fatty Acid (VFA) (mM). The results indicated interactions between Ca and Mn in relation to the digestibility of dry matter, organic matter, NDF, ADF, cellulose, pH, NH3 and VFA concentration of rumen fluid. The optimal combination of the minerals used were 2.000 ppm of Mn and 150 ppm of Ca; these values yielded the highest values of digestibility of dry matter (41.914%), organic matter (40.990%), NDF (66.429%), ADF (64.396%) and cellulose (68.524%) and the highest concentration of VFA (117.302 mM).
PDF References Citation

How to cite this article

Dewi Febrina, Novirman Jamarun, Mardiati Zain and Khasrad, 2016. Effects of Calcium (Ca) and Manganese (Mn) Supplementation During Oil Palm Frond Fermentation by Phanerochaete chrysosporium on In vitro Digestibility and Rumen Fluid Characteristics. Pakistan Journal of Nutrition, 15: 352-358.

DOI: 10.3923/pjn.2016.352.358

URL: https://scialert.net/abstract/?doi=pjn.2016.352.358

Search


REFERENCES


  1. Aitken, M.D., R. Venkatadri and R.L. Irvine, 1989. Oxidation of phenolic pollutants by a lignin degrading enzyme from the white-rot fungus Phanerochaete chrysosporium. Water Res., 23: 443-450.
    CrossRefDirect Link

  2. Ali, A.I.M., S. Sandi, A. Imsya, A. Prabowo and N. Rofiq, 2015. Evaluation of yeast supplementation with urea-molasses in rice straw-based diets on in vitro ruminal fermentation. Pak. J. Nutr., 14: 988-993.
    CrossRefDirect Link

  3. Alimon, A.R., 2005. The nutritive value of palm kernel cake for animal feeds. Palm Oil Developments, Vol. 40, Malaysian Palm Oil Board, Kuala Lumpur, Malaysia, pp: 12-14.

  4. Alwi, M., S. Wardhana and FM. Suhartati, 2013. Sugarcane baggase fermentation using Phanerochaete chrysosporium as effort to increase rumen fermentation products in vitro. Jurnal Ilmiah Peternakan, 1: 479-487.

  5. AOAC., 1995. Official Methods of Analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Washington, DC.

  6. Arora, S.P., 1995. Microbial Digestion in the Ruminant. Gadjah Mada University Press, Yogyakarta.

  7. Baldrian, P., 2003. Interactions of heavy metals with white-rot fungi. Enzyme Microb. Technol., 32: 78-91.
    CrossRefDirect Link

  8. Balgees, A., A. Elmnan, A.M.A.F. Elseed and A.M. Salih, 2009. Effects of Albizia lebbeck or wheat bran supplementation on intake, digestibility and rumen fermentation of ammoniated bagasse. J. Applied Sci. Res., 5: 1002-1006.
    Direct Link

  9. Brown, J.A., J.K. Glen and M.H. Gold, 1990. Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J. Bacteriol., 172: 3125-3130.
    PubMedDirect Link

  10. Chahal, P.S. and D.S. Chahal, 1999. Lignocellulose Waste: Biological Conversion. In: Bioconversion of Waste Materials to Industrial Products, Martin, A.M. (Ed.). 2nd Edn., Blackie Academic and Professional, London, pp: 376-422.

  11. Elihasridas, 2012. The effect of supplementation of mineral Zinc on in vitro digestibility of amoniated corn cobs ration. J. Peternakan, 9: 9-14.
    Direct Link

  12. Erdman, R.A., 1988. Dietary buffering requirements of the lactating dairy cow: A review. J. Dairy Sci., 71: 3246-3266.
    CrossRefDirect Link

  13. Fariani, A., A. Abrar, G. Muslim and L. Warly, 2015. Supplementation of fermented palm press fibre on digestibility of rice straw and rumen bacteria profile. Pak. J. Nutr., 14: 80-83.
    CrossRefDirect Link

  14. Febrina, D., N. Jamarun, M. Zain, Khasrad and R. Mariani, 2014. Biological delignification by Phanerochaete chrysosporium with addition of mineral Mn and its effect on nutrient content of oil palm frond. Proceedings of the 16th AAAP Animal Science Congress, November 10-14, 2014, Yogyakarta, Indonesia, pp: 1723-1726.

  15. Feng, C.L., G.M. Zeng, D.L. Huang, S. Hu and M.H. Zhao et al., 2011. Effect of ligninolytic enzymes on lignin degradation and carbon utilization during lignocellulosic waste composting. Process Biochem., 46: 1515-1520.
    CrossRefDirect Link

  16. Fragoeiro, S. and N. Magan, 2005. Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor. Environ. Microbiol., 7: 348-355.
    CrossRefDirect Link

  17. Gusse, A.C., P.D. Miller, T.J. Volk, 2006. White-rot fungi demonstrate first biodegradation of phenolic resin. Environ. Sci. Technol., 40: 4196-4199.
    CrossRefDirect Link

  18. Hammel, K.E., 1997. Fungal Degradation of Lignin. In: Plant Litter Quality and Decomposition, Cadisch, G. and K.E. Giller (Eds.). US Department of Agriculture, Madison, USA., pp: 33-45.

  19. Huang, D.L., G.M. Zeng, C.L. Feng, S. Hu and M.H. Zhao et al., 2010. Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress. Chemosphere, 81: 1091-1097.
    CrossRefDirect Link

  20. Kawamoto, H., W.Z. Mohamed, N.I.M. Shukur, M.S.M. Ali, Y. Ismail and S. Oshio, 2001. Palatability, digestibility and voluntary intake of processed oil Palm fronds in cattle. Jap. Agric. Res. Quart., 35: 195-200.
    CrossRefDirect Link

  21. Kerem, Z. and Y. Hadar, 1997. The Role of Manganese in Enhanced Lignin Degradation by Pleurotus Ostreatus. TAPPI Press, Atlanta, GA.

  22. Kerem, Z. and Y. Hadar, 1995. Effect of manganese on preferential degradation of lignin by Pleurotus ostreatus during solid-state fermentation. Applied Environ. Microbiol., 61: 3057-3062.
    Direct Link

  23. Liu, J.X., A. Susenbeth and K.H. Sudekum, 2002. In vitro gas production measurements to evaluate interactions between untreated and chemically treated rice straws, grass hay and mulberry leaves. J. Anim. Sci., 80: 517-524.
    PubMedDirect Link

  24. Lopez, M.J., M.D.C. Vargas-Garcia, F. Suarez-Estrella, N.N. Nichols, B.S. Dien and J. Moreno, 2007. Lignocellulose-degrading enzymes produced by the ascomycete Coniochaeta ligniaria and related species: Application for a lignocellulosic substrate treatment. Enzyme Microb. Technol., 40: 794-800.
    CrossRefDirect Link

  25. Lynch, J.M., 1993. Substrate Availability in the Production of Composts. In: Science and Engineering of Composting: Design, Environmental, Microbiological and Utilization Aspects, Hoitink, H.A.J. and H.M. Keener (Eds.). Renaissance Publications, Ohio, pp: 24-35.

  26. McDonald, P., R.A. Edwards, J.F.D. Greenhalgh and C.A. Morgan, 2010. Animal Nutrition. 7th Edn., John Willey and Sons, New York, USA.

  27. MoA., 2014. Data center and information systems. Ministry of Agriculture, Jakarta, Indonesia.

  28. Moore, K.J. and H.J.G. Jung, 2001. Lignin and fiber digestion. J. Range Manage., 54: 420-430.
    CrossRefDirect Link

  29. Muhktarudin and Liman, 2006. Determination of utilization level of organic mineral to improve rumen bioprocess of goat by in vitro method. J. Ilmu-Ilmu Peternakan Indonesia, 8: 132-140.
    Direct Link

  30. Okano, K., Y. Iida, M. Samsuri, B. Prasetya, T. Usagawa and T. Watanabe, 2006. Comparison of in vitro digestibility and chemical composition among sugarcane bagasses treated by four white-rot fungi. Anim. Sci. J., 77: 308-313.
    CrossRefDirect Link

  31. Srebotnik, E., K.A. Jensen Jr. and K.E. Hammel, 1994. Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase. Proc. Natl. Acad. Sci. USA., 91: 12794-12797.
    Direct Link

  32. Sudekum, H.K., F. Brusemeister, A. Schroder and M. Stangassinger, 2006. Effects of amount of intake and stage of forage maturity on urinary allantoin excretion and estimated microbial crude protein synthesis in the rumen of steers. J. Anim. Physiol. Anim. Nutr., 90: 136-145.
    CrossRefDirect Link

  33. Sun, Y. and J. Cheng, 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol., 83: 1-11.
    CrossRefDirect Link

  34. Suparjo, 2010. Improving nutritive value of cocoa pod husk as feedstuff by bioporcesses with Phanerochaete chrysosporium with Mn2+ dan Ca2+. Disertasi Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor.

  35. Suyitman, L. Warly and Evitayani, 2013. Palm leaf processing as ruminant feeds. Pak. J. Nutr., 12: 213-218.
    CrossRefDirect Link

  36. Tang, L., G.M. Zeng, G.L. Shen, Y. Zhang, G.H. Huang and J.B. Li, 2006. Simultaneous amperometric determination of lignin peroxidase and manganese peroxidase activities in compost bioremediation using artificial neural networks. Anal. Chim. Acta, 579: 109-116.
    CrossRefDirect Link

  37. Tilley, J.M.A. and R.A. Terry, 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci., 18: 104-111.
    CrossRefDirect Link

  38. Tripathi, M.K., A.S. Mishra, A.K. Misra, S. Vaithiyanathan, R. Prasad and R.C. Jakhmola, 2008. Selection of white-rot basidiomycetes for bioconversion of mustard (Brassica compestris) straw under solid-state fermentation into energy substrate for rumen micro-organism. Lett. Applied Microbiol., 46: 346-370.
    CrossRefDirect Link

  39. Urek, R.O. and N.K. Pazarlioglu, 2005. Production and stimulation of manganese peroxidase by immobilized Phanerochaete chrysosporium. Process Biochem., 40: 83-87.
    CrossRefDirect Link

  40. van Soest, P.J., J.B. Robertson and B.A. Lewis, 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583-3597.
    CrossRefPubMedDirect Link

  41. Waldron, M.R., F.N. Schrick, J.D. Quigley, J.L. Klotz, A.M. Saxton and R.N. Heitmann, 2002. Volatile fatty acid metabolism by epithelial cells isolated from different areas of the ewe rumen. J. Anim Sci., 80: 270-278.
    PubMedDirect Link

  42. Wen, X., Y. Jia and X. Li, 2009. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium-A white rot fungus. Chemosphere, 75: 1003-1007.
    CrossRefDirect Link

  43. Wuyep, P.A., A.U. Khan and A.J. Nok, 2003. Production and regulation of lignin degrading enzymes from Lentinus squarrosulus (mont.) Singer and Psathyrella atroumbonata Pegler. Afr. J. Biotechnol., 2: 444-447.
    CrossRefDirect Link

  44. Zahari, M.W. and A.R. Alimon, 2005. Use of palm kernel cake and oil palm by-products in compound feed. Palm Oil Dev., 40: 5-9.

  45. Zain, M., J. Rahman and Khasrad, 2014. Effect of palm oil by products on in vitro fermentation and nutrient digestibility. Anim. Nutr. Feed Technol., 14: 175-181.
    Direct Link

  46. Zeng, G.M., H.Z. Mei, L.H. Dan, L. Cui and H. Chao et al., 2013. Purification and biochemical characterization of two extracellular peroxidases from Phanerochaete chrysosporium responsible for lignin biodegradation. Int. Biodeteriorat. Biodegradat., 85: 166-172.
    CrossRefDirect Link

  47. Zhao, J., T.H. de Koker and B.J.H. Janse, 1996. Comparative studies of lignin peroxidases and manganese-dependent peroxidases produced by selected white rot fungi in solid media. FEMS Microbiol. Lett., 145: 393-399.
    CrossRefDirect Link

Search


Related Articles

Leave a Comment


Your email address will not be published. Required fields are marked *

Useful Links

  • Journals
  • For Authors
  • For Referees
  • For Librarian
  • For Socities

Contact Us

Office Number 1128,
Tamani Arts Building,
Business Bay,
Deira, Dubai, UAE

Phone: +971 507 888 742
Email: [email protected]

About Science Alert

Science Alert is a technology platform and service provider for scholarly publishers, helping them to publish and distribute their content online. We provide a range of services, including hosting, design, and digital marketing, as well as analytics and other tools to help publishers understand their audience and optimize their content. Science Alert works with a wide variety of publishers, including academic societies, universities, and commercial publishers.

Follow Us
© Copyright Science Alert. All Rights Reserved