Subscribe Now Subscribe Today
Research Article
 

Effect of Ethanolic Extract of Moringa oleifera Lam. Leaves on Body Weight and Hyperglycemia of Diabetic Rats



Hafiz Muhammad Irfan, Mohd Zaini Asmawi, Nurzalina Abdul Karim Khan and Amirin Sadikun
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Moringa oleifera is cognizant locally as mungai in Malaysia and commonly used traditionally. Therefore, the 14-day study was conducted on STZ-induced diabetic rats to evaluate the effect of 95% ethanolic extract of Moringa oleifera leaves on body weight, hyperglycemia and lipids. Group-I was negative diabetic control, received distilled water (10 ml/kg bw). Metformine (500 mg/kg bw) treated group-II was specified as positive control while group-III to VI received leaves extract with variable doses (1000, 500, 250, 125 mg/kg bw orally). In multiple dose experiment, the blood glucose and body weight monitoring was executed at day 0, 7 and 14 while in single dose at 0, 1, 3, 5 and 7 h. At the end of treatment, animals were sacrificed and blood was collected through cardiac puncture for lipid profile. The acute and sub-chronic treatment exhibited highly significant (p<0.01) fall in blood glucose at 500 and 1000 mg/kg dose and 25.8% decline in body weight was observed. The treated group also offered reduction in total cholesterol (p<0.01), triglycerides (p<0.05) and low density lipoprotein (p<0.01). It also appeared that by reducing the dose of extract, both the antihyperglycemic and loss of body weight decreases in treated groups. It can be recommended in obese diabetic patients to prevent macrovascular complication pertinent to body weight and lipids.

Services
Related Articles in ASCI
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Hafiz Muhammad Irfan, Mohd Zaini Asmawi, Nurzalina Abdul Karim Khan and Amirin Sadikun, 2016. Effect of Ethanolic Extract of Moringa oleifera Lam. Leaves on Body Weight and Hyperglycemia of Diabetic Rats. Pakistan Journal of Nutrition, 15: 112-117.

DOI: 10.3923/pjn.2016.112.117

URL: https://scialert.net/abstract/?doi=pjn.2016.112.117

REFERENCES

1:  Anwar, F., S. Latif, M. Ashraf and A.H. Gilani, 2007. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res., 21: 17-25.
CrossRef  |  PubMed  |  Direct Link  |  

2:  Babu, R. and M. Chaudhuri, 2005. Home water treatment by direct filtration with natural coagulant. J. Water Health, 3: 27-30.
PubMed  |  Direct Link  |  

3:  Bailey, C.J., 1992. Biguanides and NIDDM. Diabetes Care, 15: 755-772.
PubMed  |  Direct Link  |  

4:  Berg, J.M., J.L. Tymoczko and L. Stryer, 2001. Glycolysis and Glyconeogensis. In: Biochemistry, Berg, J.M., J.L. Tymoczko and L. Stryer (Eds.). WH Freeman and Company, New York, pp: 425-464

5:  Filho, V.C. and R.A. Yunes, 1998. [Estrategies for obtaining pharmacologically active compounds from medicinal plants. Concepts about structural modification for improve the activity]. Quimica Nova, 21: 99-105, (In Portuguese).
Direct Link  |  

6:  Chaurasia, S., R. Jain, R.C. Saxena, I.D. Chaurasia and R. Shrivastava, 2010. Hyperglycemic activity of Eugenia jambolane in Streptozotocin induced diabetic rats. J. Chem. Pharm. Res., 2: 458-460.
Direct Link  |  

7:  Cusi, K., A. Consoli and R.A. DeFronzo, 1996. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab., 81: 4059-4067.
CrossRef  |  Direct Link  |  

8:  Ali, F.T., N.S. Hassan and R.R. Abdrabou, 2015. Potential activity of Moringa oleifera leaf extract and some active ingredients against diabetes in rats. Int. J. Scient. Eng. Res., 6: 1490-1500.
Direct Link  |  

9:  Frode, T.S. and Y.S. Medeiros, 2008. Animal models to test drugs with potential antidiabetic activity. J. Ethnopharmacol., 115: 173-183.
CrossRef  |  Direct Link  |  

10:  Ghasi, S., E. Nwobodo and J.O. Ofili, 2000. Hypocholesterolemic effects of crude extract of leaf of Moringa oleifera Lam in high-fat diet fed wistar rats. J. Ethnopharmacol., 69: 21-25.
CrossRef  |  PubMed  |  Direct Link  |  

11:  Hakkim, F.L., S. Girija, R.S. Kumar and M.D. Jalaludeen, 2007. Effect of aqueous and ethanol extracts of Cassia auriculata L. flowers on diabetes using alloxan induced diabetic rats. Int. J. Diabetes Metabol., 15: 100-106.
Direct Link  |  

12:  Harborne, J.B., 2005. Phytochemical Method: A Guide to Modern Techniques of Plant Analysis. 3rd Edn., Springer, New York

13:  Hermansen, K. and L.S. Mortensen, 2007. Bodyweight changes associated with antihyperglycaemic agents in type 2 diabetes mellitus. Drug Saf., 30: 1127-1142.
CrossRef  |  Direct Link  |  

14:  International Diabetes Federation, 2013. IDF Diabetes Atlas. 6th Edn., International Diabetes Federation, Brussels

15:  Jung, U.J., M.K. Lee, Y.B. Park, M.A. Kang and M.S. Choia, 2006. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int. J. Biochem. Cell Biol., 38: 1134-1145.
CrossRef  |  PubMed  |  Direct Link  |  

16:  Kamboj, V.P., 2000. Herbal medicines. Curr. Sci., 78: 35-39.

17:  Kaplan, M.A.C. and O.R. Gottlieb, 1990. Busca racional de principios ativos em plantas. Interciencia, 15: 26-29.

18:  Algariri, K., K.Y. Meng, I.J. Atangwho, M.Z. Asmawi, A. Sadikun, V. Murugaiyah and N. Ismai, 2013. Hypoglycemic and anti-hyperglycemic study of Gynura procumbens leaf extracts. Asian Pac. J. Trop. Biomed., 3: 358-366.
CrossRef  |  Direct Link  |  

19:  Lenzen, S., 2008. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 51: 216-226.
CrossRef  |  PubMed  |  Direct Link  |  

20:  Letchuman, G.R., W.M.W. Nazaimoon, W.B.W. Mohamad, L.R. Chandran and G.H. Tee et al., 2010. Prevalence of diabetes in the malaysian national health morbidity survey III 2006. Med. J. Malaysia, 65: 173-179.
Direct Link  |  

21:  Maiti, R., D. Jana, U.K. Das and D. Ghosh, 2004. Antidiabetic effect of aqueous extract of seed of Tamarindus indica in streptozotocin-induced diabetic rats. J. Ethnopharmacol., 92: 85-91.
CrossRef  |  Direct Link  |  

22:  Mavian, A.A., S. Miller and R.R. Henry, 2010. Managing type 2 diabetes: Balancing HbA1c and body weight. Postgrad. Med., 122: 106-117.
CrossRef  |  Direct Link  |  

23:  Murthy, V.K., J.C. Shipp, C. Hanson and D.M. Shipp, 1992. Delayed onset and decreased incidence of diabetes in BB rats fed free radical scavengers. Diabetes Res. Clin. Pract., 18: 11-16.
CrossRef  |  Direct Link  |  

24:  National Nutrition Council, 1999. Finnish nutrition recommendations. Committee Report 7, Ministry of Agriculture and Forestry, Helsinki, Finland, pp: 9.

25:  Pari, L.J. and J. Umamaheswari, 2000. Antihyperglycaemic activity of Musa sapientum flowers: Effect on lipid peroxidation in alloxan diabetic rats. Phytother. Res., 14: 136-138.
CrossRef  |  Direct Link  |  

26:  Prabhakar, P.K. and M. Doble, 2008. A target based therapeutic approach towards diabetes mellitus using medicinal plants. Curr. Diabetes Rev., 4: 291-308.
Direct Link  |  

27:  Secco, R.S., 1990. Produtos naturais: Alternativa segura? [Natural products: Secure alternative?]. Cienc. Cult., 42: 807-810.
Direct Link  |  

28:  Shaw, J.E., R.A. Sicree and P.Z. Zimmet, 2010. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract., 87: 4-14.
CrossRef  |  PubMed  |  Direct Link  |  

29:  Shulman, G.I., 2000. Cellular mechanisms of insulin resistance. J. Clin. Invest., 106: 171-176.
CrossRef  |  Direct Link  |  

30:  Sofowora, A., 1993. Medicinal Plants and Traditional Medicine in Africa. Spectrum Books Ltd, Ibadan, Nigeria, pp: 191-289

31:  Tan, B.K.H., C.H. Tan and P.N. Pushparaj, 2005. Anti-diabetic activity of the semi-purified fractions of Averrhoa bilimbi in high fat diet fed-streptozotocin-induced diabetic rats. Life Sci., 76: 2827-2839.
CrossRef  |  Direct Link  |  

32:  Trease, G.E. and W.C. Evans, 1989. Pharmacognosy. 11th Edn., Bailliere Tindall, London, pp: 45-50

33:  Chen, W., T. Hira, S. Nakajima, H. Tomozawa, M. Tsubata, K. Yamaguchi and H. Hara, 2012. Suppressive effect on food intake of a potato extract (Potein®) involving cholecystokinin release in rats. Biosci. Biotechnol. Biochem., 76: 1104-1109.
CrossRef  |  Direct Link  |  

©  2021 Science Alert. All Rights Reserved