Subscribe Now Subscribe Today
Abstract
Fulltext PDF
References
Research Article
 

Physiological Effects of Agroindustrial Co-Products: Cactus (Opuntia ficus) Pear Peel Flour and Stripe Apple (Malus domestica) Marc Flour on Wistar Rats (Rattus norvegicus)



M. Lourdes Perez-Chabela, Angelica Cerda-Tapia, Juan Diaz-Vela, P. Claudia Delgadillo, M. Margarita Diaz and Gabriela Aleman
 
ABSTRACT

Agro-industrial co-products as fruit peel can be used as alternative and cheap fiber and prebiotics resources. The objective of this work was to evaluate rats’ in vivo physiological effect the in vivo effect of apple marc and cactus pear peel during 90 days. Inulin (as control) containing diet resulted in higher average body weight, but apple marc diet showed the same body weight gain. Diets reduced glucose and triglycerides in serum. Lactic acid bacteria and Bifidobacteria count were higher in cactus peel flour diet, although apple marc diet resulted in better fatty acids production. Due to higher insoluble fiber, apple marc flour and cactus pear peel flour resulted in higher non-digestible carbohydrates. Apple marc flour showed similar physiological effects as compared to inulin and can be employed as a good prebiotic source.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

M. Lourdes Perez-Chabela, Angelica Cerda-Tapia, Juan Diaz-Vela, P. Claudia Delgadillo, M. Margarita Diaz and Gabriela Aleman, 2015. Physiological Effects of Agroindustrial Co-Products: Cactus (Opuntia ficus) Pear Peel Flour and Stripe Apple (Malus domestica) Marc Flour on Wistar Rats (Rattus norvegicus). Pakistan Journal of Nutrition, 14: 346-352.

DOI: 10.3923/pjn.2015.346.352

URL: https://scialert.net/abstract/?doi=pjn.2015.346.352

REFERENCES
Anderson, J.W. and W.J. Chen, 1979. Plant fiber. Carbohydrate and lipid metabolism. Am. J. Clin. Nutr., 32: 346-363.
Direct Link  |  

Asad, U., N.J. Emenaker and J.A. Milner, 2008. Colorectal Cancer Prevention. In: Handbook of Prebiotics, Gibson, G.R. and M.B. Roberfroid (Eds.). CRC Press, Boca Raton, FL., pp: 285-294.

Belobrajdic, D.P., C.L.D. Jenkins, R. Bushell, M.K. Morell and A.R. Bird, 2012. Fructan extracts from wheat stem and barley grain stimulate large bowel fermentation in rats. Nutr. Res., 32: 599-606.
CrossRef  |  Direct Link  |  

Beylot, M., F. Forcheron and D. Letexier, 2008. Triacylglycerols and Cholesterol Metabolism. In: Handbook of Prebiotics, Gibson, G.R. and M.B. Roberfroid (Eds.). CRC Press, Boca Raton, FL., pp: 163-200.

Boeckner, L.S., M.I. Schnepf and B.C. Tungland, 2001. Inulin: A review of nutritional and health implications. Adv. Food Nutr. Rev., 43: 1-63.
PubMed  |  

Boler, B.M.V. and G.C. Fahley, 2012. Prebiotics of Plant and Microbial Origin. In: Direct-Fed Microbials and Prebiotics for Animals, Callaway, T.R. and S.C. Ricke (Eds.). Springer, New York, USA., pp: 13-26.

Bornet, F.R.J., M.S. Billaux and B. Messing, 1997. Glycaemic index concept and metabolic diseases. Int. J. Biol. Marcomol., 21: 207-219.
CrossRef  |  Direct Link  |  

Borruel, N., 2007. Probiotics and prebiotics in inflammatory bowel disease. Gastroenterologia Hepatologia, 30: 419-425.
CrossRef  |  Direct Link  |  

Brown, I., M. Warhurst, J. Arcot, M. Playne, R.J. Illman and D.L. Topping, 1997. Fecal numbers of bifidobacteria are higher in pigs fed Bifidobacterium longum with a high amylose cornstarch than with a low amylose cornstarch. J. Nutr., 127: 1822-1827.
Direct Link  |  

Bugaut, M., 1987. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp. Biochem. Physiol. Part B: Comp. Biochem., 86: 439-472.
CrossRef  |  Direct Link  |  

Campbell, J.M., G.C. Fahey Jr. and B.W. Wolf, 1997. Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J. Nutr., 127: 130-136.
Direct Link  |  

Chau, C.F., C.H. Chen and C.Y. Lin, 2004. Insoluble fiber-rich fractions derived from Averrhoa carambola: Hypoglycemic effects determined by in vitro methods. LWT-Food Sci. Technol., 37: 331-335.
CrossRef  |  Direct Link  |  

Der, G. and B. Everitt, 2002. A Handbook of Statistical Analysis Using SAS. 2nd Edn., Chapman and Hall, USA., ISBN: 1-5848-8245-X, pp: 101-116.

Dongowski, G., G. Jacobasch and D. Schmiedl, 2005. Structural stability and prebiotic properties of resistant starch type 3 increase bile acid turnover and lower secondary bile acid formation. J. Agric. Food Chem., 53: 9257-9267.
CrossRef  |  Direct Link  |  

DuBois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28: 350-356.
CrossRef  |  Direct Link  |  

Fiordaliso, M.F., N. Kok, J.P. Desager, F. Goethals, D. Deboyser, M. Roberfroid and N. Delzenne, 1995. Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids, 30: 163-167.
CrossRef  |  Direct Link  |  

Franck, A. and D. Bosscher, 2009. Inulin. In: Fiber Ingredients, Cho, S.S. and P. Samuel (Eds.). CRC Press, Boca Raton, FL., pp: 41-60.

Freund, R.J. and R.C. Littell, 2004. SAS® System for Regression. John Wiley and Sons, New York, USA., pp: 31-36.

Friedewald, W.T., R.I. Levy and D.S. Fredrickson, 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 18: 499-502.
PubMed  |  Direct Link  |  

Gibson, G.R. and M.B. Roberfroid, 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr., 125: 1401-1412.
PubMed  |  Direct Link  |  

Gibson, G.R., H.M. Probert, J. van Loo, R.A. Rastall and M.B. Roberfroid, 2004. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev., 17: 259-275.
CrossRef  |  Direct Link  |  

Grasten, S.M., A.M. Pajari, K.H. Liukkonen, S. Karppinen and H.M. Mykkanen, 2002. Fibers with different solubility characteristics alter similarly the metabolic activity of intestinal microbiota in rats fed cereal brans and inulin. Nutr. Res., 22: 1435-1444.
CrossRef  |  Direct Link  |  

Griffin, I.J. and S.A. Abrams, 2008. Effects of Prebiotics on Mineral Absorption. In: Handbook of Prebiotics, Gibson, G.R. and M.B. Roberfroid (Eds.). CRC Press, Boca Raton, FL., pp: 93-104.

Hague, A., B. Singh and C. Paraskeva, 1997. Butyrate acts as a survival factor for colonic epithelial cells: Further fuel for the in vivo versus in vitro debate. Gastroenterology, 112: 1036-1040.
CrossRef  |  Direct Link  |  

Hara, H., Y. Saito, H. Nakashima and S.A. Kiriyama, 1994. Evaluation of fermentability of acid-treated maize husk by rat caecal bacteria in vivo and in vitro. Br. J. Nutr., 71: 719-729.
CrossRef  |  Direct Link  |  

Jurgonski, A., J. Juskiewicz and Z. Zdunczyk, 2014. A high-fat diet differentially affects the gut metabolism and blood lipids of rats depending on the type of dietary fat and carbohydrate. Nutrients, 6: 616-626.
CrossRef  |  Direct Link  |  

Larrauri, J.A., I. Goni, N. Martin-Carron, P. Ruperez and F. Saura-Calixtos, 1996. Measurement of health-promoting properties in fruit dietary fibres: Antioxidant capacity, fermentability and glucose retardation index. J. Sci. Food Agric., 71: 515-519.
CrossRef  |  Direct Link  |  

Li, S., T. Chen, F. Xu, S. Dong, H. Xu, Y. Xiong and H. Wei, 2014. The beneficial effect of exopolysaccharides from Bifidobacterium bifidum WBIN03 on microbial diversity in mouse intestine. J. Sci. Food Agric., 94: 256-264.
CrossRef  |  Direct Link  |  

Lupton, J.R. and P.P. Kurtz, 1993. Relationship of colonic luminal short-chain fatty acids and pH to in vivo cell proliferation in rats. J. Nutr., 123: 1522-1530.
PubMed  |  Direct Link  |  

McIntyre, A., G.P. Young, T. Taranto, P.R. Gibson and P.B. Ward, 1991. Different fibers have different regional effects on luminal contents of rat colon. Gastroenterology, 101: 1274-1281.
PubMed  |  

Monro, J.A., G. Paturi, C.A. Butts, W. Young and C.E. De Guzman et al., 2012. Prebiotic effects of fermentable carbohydrate polymers may be modulated by faecal bulking of non-fermentable polysaccharides in the large bowel of rats. Int. J. Food Sci. Technol., 47: 968-976.
CrossRef  |  Direct Link  |  

Nauck, M., G.R. Warnick and N. Rifai, 2002. Methods for measurement of LDL-cholesterol: A critical assessment of direct measurement by homogeneous assays versus calculation. Clin. Chem., 48: 236-254.
Direct Link  |  

Pascoal, G.B., T.M.C.C. Filisetti, E.P. Alvares, F.M. Lajolo and E.W. Menezes, 2013. Impact of onion (Allium cepa L) fructans fermentation on the cecum of rats and the use of in vitro biomarkers to assess in vivo effects. Bioactive Carbohydr. Dietary Fibre, 1: 89-97.
CrossRef  |  Direct Link  |  

Paturi, G., C.A. Butts, J.A. Monro, D. Hedderley, H. Stoklosinski, N.C. Roy and J. Ansell, 2012. Evaluation of gastrointestinal transit in rats fed dietary fibres differing in their susceptibility to large intestine fermentation. J. Funct. Foods, 4: 107-115.
CrossRef  |  Direct Link  |  

Reeves, P.G., F.H. Nielsen and G.C. Fahey Jr., 1993. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 123: 1939-1951.
CrossRef  |  PubMed  |  Direct Link  |  

Remesy, C. and C. Demigne, 1976. Partition and absorption of valatile fatty acids in the alimentary canal of the rat. Annales Recherches Veterinaires, 7: 39-55.
PubMed  |  Direct Link  |  

Remesy, C., S.R. Behr, M.A. Levrat and M.D. Demigne, 1992. Fiber fermentability in the rat cecum and its physiological consequences. Nutr. Res., 12: 1235-1244.
CrossRef  |  Direct Link  |  

Richardson, A.J., A.G. Calder, C.S. Stewart and A. Smith, 1989. Simultaneous determination of volatile and non-volatile acidic fermentation products of anaerobes by capillary gas chromatography. Lett. Applied Microbiol., 9: 5-8.
CrossRef  |  Direct Link  |  

Ritsema, T. and S. Smeekens, 2003. Fructans: Beneficial for plants and humans. Curr. Opin. Plant Biol., 6: 223-230.
CrossRef  |  Direct Link  |  

Rodriguez-Cabezas, M.E., D. Camuesco, B. Arribas, N. Garrido-Mesa and M. Comalada et al., 2010. The combination of fructooligosaccharides and resistant starch shows prebiotic additive effects in rats. Clin. Nutr., 29: 832-839.
CrossRef  |  Direct Link  |  

Sanchez-Muniz, F.J. and S. Bastida, 2008. Do not use the Friedewald formula to calculate LDL-cholesterol in hypercholesterolaemic rats. Eur. J. Lipid Sci. Technol., 110: 295-301.
CrossRef  |  Direct Link  |  

Shimotoyodome, A., N. Yajima, J. Suzuki and I. Tokimitsu, 2005. Effects of coingestion of different fibers on fecal excretion and cecal fermentation in rats. Nutr. Res., 25: 1085-1096.
CrossRef  |  Direct Link  |  

Turner, N.D. and J.R. Lupton, 2011. Dietary fiber. Adv. Nutr., 2: 151-152.
Direct Link  |  

Van Soest, P.J., 1978. Dietary fibers: Their definition and nutritional properties. Am. J. Clin. Nutr., 31: S12-S20.
Direct Link  |  

Vigne, J.L., D. Lairon, P. Borel, H. Portugal, A.M. Pauli, J.C. Hauton and H. Lafont, 1987. Effect of pectin, wheat bran and cellulose on serum lipids and lipoproteins in rats fed on a low- or high-fat diet. Br. J. Nutr., 58: 405-413.
CrossRef  |  Direct Link  |  

Yajima, T., 1985. Contractile effect of short-chain fatty acids on the isolated colon of the rat. J. Physiol., 368: 667-678.
CrossRef  |  Direct Link  |  

Younes, H., K. Garleb, S. Behr, C. Remesy and C. Deminge, 1994. Fermentable fibers or oligosaccharides reduce urinary nitrogen excretion by increasing urea disposal in the rat cecum. J. Nutr., 125: 1010-1016.
PubMed  |  Direct Link  |  

©  2019 Science Alert. All Rights Reserved
Fulltext PDF References Abstract