Subscribe Now Subscribe Today
Research Article
 

Comparative Effect of Tempe and Soymilk on Fasting Blood Glucose, Insulin Level and Pancreatic Beta Cell Expression (Study on Streptozotocin-Induced Diabetic Rats)



Siti Harnina Bintari, Natalia Desy Putriningtyas, Kartika Nugraheni, Nyoman Suci Widyastiti, Edi Dharmana and Andrew Johan
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Hyperglycemia in diabetes mellitus due to pancreatic beta cell destruction can cause the raising of free radicals production. Soy isoflavone-containing diets have been reported to be beneficial in diabetes because they show potential antioxidant and antihyperglycemia activities. This study was conducted to analyze the difference between isoflavone aglycones in tempe and isoflavone glycosides in soymilk on beta cell function including insulin secretion, fasting blood glucose (FBG) and insulin expression of pancreatic beta cells. Thirty sprague dawley (SD) male rats were randomly divided into 3 following groups: (K1) diabetic control (P1) tempe flour 1.8 g (P2) soymilk powder 1.35 g. The treatment were given everyday for 28 days via oral gavage. FBG was measured using the GOD-PAP method, serum insulin was measured using ELISA, insulin expression analysis was done by immunohistochemical. Value of p less than 5% (p<0.05) was considered statistically significant. Tempe flour significantly decrease FBG level better than soy milk and control group (p<0.01). Although both groups showed an increase in serum insulin level after intervention, there was no significant different between them (p = 0.639). There were also a significantly decrease in FBG level on soymilk group compared to control (p<0.01). The mean insulin expression on K1, P1 and P2 were 2.67±2.34, 6.17±1.47 and 6.83±1.17, respectively. The insulin expression of both groups were not significantly different (p = 0.405). It is concluded that tempe flour shows a better anti-diabetic activity than soymilk.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Siti Harnina Bintari, Natalia Desy Putriningtyas, Kartika Nugraheni, Nyoman Suci Widyastiti, Edi Dharmana and Andrew Johan, 2015. Comparative Effect of Tempe and Soymilk on Fasting Blood Glucose, Insulin Level and Pancreatic Beta Cell Expression (Study on Streptozotocin-Induced Diabetic Rats). Pakistan Journal of Nutrition, 14: 239-246.

DOI: 10.3923/pjn.2015.239.246

URL: https://scialert.net/abstract/?doi=pjn.2015.239.246

REFERENCES
1:  American Diabetes Association, 2010. Standards of medical care in diabetes-2010. Diabetes Care, 33: S11-S61.
CrossRef  |  Direct Link  |  

2:  American Diabetes Association, 2012. Diagnosis and classification of diabetes mellitus. Diabetes Care, 35: S64-S71.
CrossRef  |  Direct Link  |  

3:  American Diabetes Association, 2003. Management of dyslipidemia in adults with diabetes. Diabetes Care, 26: 83-86.
CrossRef  |  Direct Link  |  

4:  Allred, D.C., 1998. Scoring immunostained slides. Mod. Pathol., 11: 155-168.

5:  Bavia, A.C.F., C.E. da Silva, M.P. Ferreira, R.S. Leite, J.M.G. Mandarino and M.C. Carrao-Panizzi, 2012. Chemical composition of tempeh from soybean cultivars specially developed for human consumption. Food Sci. Technol., 32: 613-620.
CrossRef  |  Direct Link  |  

6:  Bintari, S.H., 2013. Pasteurization for hygienic tempe: Study case of Krobokan Tempe yesterday and today. GSTF Int. J. BioSci., 2: 39-44.
Direct Link  |  

7:  Cheng, S.Y., N.S. Shaw, K.S. Tsai and C.Y. Chen, 2004. The hypoglycemic effects of soy isoflavones on postmenopausal women. J. Women's Health, 13: 1080-1086.
CrossRef  |  Direct Link  |  

8:  Cassidy, A., J.E. Brown, A. Hawdon, M.S. Faughnan and L.J. King et al., 2006. Factors affecting the bioavailability of soy isoflavones in humans after ingestion of physiologically relevant levels from different soy foods. J. Nutr., 136: 45-51.
Direct Link  |  

9:  Day, A.J., F.J. Canada, J.C. Diaz, P.A. Kroon and R. Mclauchlan et al., 2000. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett., 468: 166-170.
CrossRef  |  PubMed  |  Direct Link  |  

10:  Esteves, E.A., J. Bressan, N.M.B. Costa, H.S.D. Martino, S.S. Donkin and J.A. Story, 2011. Modified soybean affects cholesterol metabolism in rats similarly to a commercial cultivar. J. Med. Food, 14: 1363-1369.
CrossRef  |  Direct Link  |  

11:  Fu, Z., W. Zhang, W. Zhen, H. Lum, J. Nadler and J. Bassaganya-Riera et al., 2010. Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology, 151: 3026-3037.
CrossRef  |  Direct Link  |  

12:  Fu, Z. and D. Liu, 2009. Long-term exposure to genistein improves insulin secretory function of pancreatic β-cells. Eur. J. Pharmacol., 616: 321-327.
CrossRef  |  Direct Link  |  

13:  Goldberg, I.J., 2001. Diabetic dyslipidemia: Causes and consequences. J. Clin. Endocrinol. Metab., 86: 965-971.
CrossRef  |  PubMed  |  Direct Link  |  

14:  Gilbert, E.R. and D. Liu, 2013. Anti-diabetic functions of soy isoflavone genistein: Mechanisms underlying its effects on pancreatic β-cell function. Food Funct., 4: 200-212.
CrossRef  |  Direct Link  |  

15:  Hsu, C.S., W.C. Chiu and S.L. Yeh, 2003. Effects of soy isoflavone supplementation on plasma glucose, lipids and antioxidant enzyme activities in streptozotocin-induced diabetic rats. Nutr. Res., 23: 65-75.
CrossRef  |  Direct Link  |  

16:  Hanhineva, K., R. Torronen, I. Bondia-Pons, J. Pekkinen, M. Kolehmainen, H. Mykkanen and H. Poutanen, 2010. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci., 11: 1365-1402.
CrossRef  |  PubMed  |  Direct Link  |  

17:  IEA., 2013. Consensus of management and prevention of diabetes mellitus type 2 in Indonesia. Indonesian Endocrinology Association (IEA), Indonesia.

18:  MoRT., 2013. Soybean powder for drink. Ministry of Reaserch and Technology (MoRT), Indonesia.

19:  Jonas, J.C., T.D. Plant, P. Gilon, P. Detimary, M. Nenquin and J.C. Henquin, 1995. Multiple effects and stimulation of insulin secretion by the tyrosine kinase inhibitor genistein in normal mouse islets. Br. J. Pharmacol., 114: 872-880.
CrossRef  |  Direct Link  |  

20:  Kalaiselvan, V., M. Kalaivani, A. Vijayakumar, K. Sureshkumar and K. Venkateskumar, 2010. Current knowledge and future direction of research on soy isoflavones as a therapeutic agents. Pharmacogn. Rev., 4: 111-117.
CrossRef  |  Direct Link  |  

21:  Kwon, D.Y., J.W. Daily III, H.K. Kim and S. Park, 2010. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr. Res., 30: 1-13.
CrossRef  |  Direct Link  |  

22:  Kwon, D.Y., S.M. Hong, I.S. Ahn, M.J. Kim, H.J. Yang and S. Park, 2011. Isoflavonoids and peptides from meju, long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro. Nutrition, 27: 244-252.
CrossRef  |  Direct Link  |  

23:  Kavanagh, K., K.L. Jones, L. Zhang, D.M. Flynn, M.K. Shadoan and J.D. Wagner, 2008. High isoflavone soy diet increases insulin secretion without decreasing insulin sensitivity in premenopausal nonhuman primates. Nutr. Res., 28: 368-376.
CrossRef  |  Direct Link  |  

24:  Kaneto, H., Y. Kajimoto, J. Miyagawa, T. Matsuoka and Y. Fujitani et al., 1999. Beneficial effects of antioxidants in diabetes: Possible protection of pancreatic beta-cells against glucose toxicity. Diabetes, 48: 2398-2406.
CrossRef  |  PubMed  |  Direct Link  |  

25:  King, R.A. and D.B. Brusill, 1998. Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. Am. J. Clin. Nutr., 67: 867-872.
Direct Link  |  

26:  Larkin, T., W.E. Price and L. Astheimer, 2008. The key importance of soy isoflavone bioavailability to understanding health benefits. Crit. Rev. Food Sci. Nutr., 48: 538-552.
CrossRef  |  Direct Link  |  

27:  Lu, M.P., R. Wang, X. Song, R. Chibbar, X. Wang, L. Wu and Q.H. Meng, 2008. Dietary soy isoflavones increase insulin secretion and prevent the development of diabetic cataracts in streptozotocin-induced diabetic rats. Nutr. Res., 28: 464-471.
CrossRef  |  Direct Link  |  

28:  Lee, D.S. and S.H. Lee, 2001. Genistein, a soy isoflavone, is a potent α-glucosidase inhibitor. FEBS Lett., 501: 84-86.
CrossRef  |  Direct Link  |  

29:  Lee, J.S., 2006. Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats. Life Sci., 79: 1578-1584.
CrossRef  |  PubMed  |  Direct Link  |  

30:  Liu, D., W. Zhen, Z. Yang, J.D. Carter, H. Si and K.A. Reynolds, 2006. Genistein acutely stimulates insulin secretion in pancreatic β-cells through a cAMP-dependent protein kinase pathway. Diabetes, 55: 1043-1050.
CrossRef  |  Direct Link  |  

31:  McCue, P., Y.I. Kwon and K. Shetty, 2005. Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean. Asia Pac. J. Clin. Nutr., 14: 145-152.
PubMed  |  Direct Link  |  

32:  Nakajima, N., N. Nozaki, K. Ishihara, A. Ishikawa and H. Tsuji, 2005. Analysis of isoflavone content in tempeh, a fermented soybean and preparation of a new isoflavone-enriched tempeh. J. Biosci. Bioeng., 100: 685-687.
CrossRef  |  Direct Link  |  

33:  Nout, M.J.R. and J.L. Kiers, 2005. Tempe fermentation, innovation and functionality: Update into the third millenium. J. Applied Microbiol., 98: 789-805.
CrossRef  |  Direct Link  |  

34:  Piskula, M.K., J. Yamakoshi and Y. Iwai, 1999. Daidzein and genistein but not their glucosides are absorbed from the rat stomach. FEBS Lett., 447: 287-291.
CrossRef  |  Direct Link  |  

35:  MOH., 2007. Basic health research Indonesia in 2007: Survey report. Ministry of Health, National Institute of Health Research and Development, Jakarta.

36:  Shim, J.Y., K.O. Kim, B.H. Seo and H.S. Lee, 2007. Soybean isoflavone extract improves glucose tolerance and raises the survival rate in streptozotocin-induced diabetic rats. Nutr. Res. Pract., 1: 266-272.
CrossRef  |  Direct Link  |  

37:  Song, T., K. Barua, G. Buseman and P.A. Murphy, 1998. Soy isoflavone analysis: Quality control and a new internal standard. Am. J. Clin. Nutr., 68: 1474S-1479S.
Direct Link  |  

38:  Sugano, M., 2005. Nutritional Implications of Soy. In: Soy in Health and Disease Prevention, Sugano, M. (Ed.). CRC Press, Boca Raton.

39:  Szkudelski, T., 2012. Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp. Biol. Med., 237: 481-490.
CrossRef  |  PubMed  |  Direct Link  |  

40:  Szkudelski, T., 2001. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res., 50: 537-546.
PubMed  |  Direct Link  |  

41:  Sheetz, M.J. and G.L. King, 2002. Molecular understanding of hyperglycemia's adverse effects for diabetic complications. J. Am. Med. Assoc., 288: 2579-2588.
CrossRef  |  PubMed  |  Direct Link  |  

42:  Steele, C., W.A. Hagopian, S. Gitelman, U. Masharani and M. Cavaghan et al., 2004. Insulin secretion in type 1 diabetes. Diabetes, 53: 426-433.
CrossRef  |  Direct Link  |  

43:  Wu, C., J. Shen, P. He, Y. Chen and L. Li et al., 2012. The α-glucosidase inhibiting isoflavones isolated from Belamcanda chinensis leaf extract. Rec. Nat. Prod., 6: 110-120.
Direct Link  |  

44:  Yang, B., Y. Chen, T. Xu, Y. Yu, T. Huang, X. Hu and D. Li, 2011. Systematic review and meta-analysis of soy products consumption in patients with type 2 diabetes mellitus. Asia Pac. J. Clin. Nutr., 20: 593-602.
PubMed  |  Direct Link  |  

©  2020 Science Alert. All Rights Reserved