Subscribe Now Subscribe Today
Research Article
 

The Effects of Probiotics on Body Weight and Biomarkers of Animal



Golgis karimi, Rosita Jamaluddin and Kolsoom Parvaneh
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Obesity is associated with the alteration of the gut microbiota. In order to determine the effects of probiotics on body weight management and its related biomarkers we performed a systematic review using clinical trial, interventional and experimental studies. We performed a broad search with no date restriction. Primary outcomes were included the parameters related to body weight management. Secondary outcomes were inflammatory markers, lipid profile, blood glucose and insulin level. A total of 12 animal studies were identified. Among these, six studies reported the significant changes in body weight and all the studies had documented significant improvements in at least one body weight related parameter. However, inflammatory markers and lipid profile were significantly improved in the animal model; changes in body weight and energy intake that could be due to probiotics supplementation were controversial. Different strains of gut microbiota have different effects on weight changes. Further studies are needed to identify the role of gut microbiota on weight regulation of human.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Golgis karimi, Rosita Jamaluddin and Kolsoom Parvaneh, 2013. The Effects of Probiotics on Body Weight and Biomarkers of Animal. Pakistan Journal of Nutrition, 12: 793-799.

DOI: 10.3923/pjn.2013.793.799

URL: https://scialert.net/abstract/?doi=pjn.2013.793.799

REFERENCES
Al‐Lahham, S.A., H. Roelofsen, F. Rezaee, D. Weening, A. Hoek, R. Vonk and K. Venema, 2012. Propionic acid affects immune status and metabolism in adipose tissue from overweight subjects. Eur. J. Clin. Invest., 42: 357-364.
CrossRef  |  

An, H.M., S.Y. Park, D.K. Lee, J.R. Kim and M.K. Cha et al., 2011. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis., Vol. 10. 10.1186/1476-511X-10-116

Andersson, U., C. Branning, S. Ahrne, G. Molin and J. Alenfall et al., 2010. Probiotics lower plasma glucose in the high-fat fed C57BL/6J mouse. Beneficial Microbes, 1: 189-196.
CrossRef  |  

Backhed, F., J.K. Manchester, C.F Semenkovich and J.I. Gordon, 2007. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci., 104: 979-984.
CrossRef  |  Direct Link  |  

Brun, P., I. Castagliuolo, V.D. Leo, A. Buda, M. Pinzani, G. Palu and D. Martines, 2007. Increased intestinal permeability in obese mice: New evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointestinal Liver Physiol., 292: G518-G525.
CrossRef  |  Direct Link  |  

Cani, P.D., A.M. Neyrinck, F. Fava, C. Knauf and R.G. Burcelin et al., 2007. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 50: 2374-2383.
CrossRef  |  Direct Link  |  

Caplan, M.S., R. Miller-Catchpole, S. Kaup, T. Russell and M. Lickerman et al., 1999. Bifidobacterial supplementation reduces the incidence of necrotizing enterocolitis in a neonatal rat model. Gastroenterology, 117: 577-583.
CrossRef  |  PubMed  |  Direct Link  |  

Chen, J.J., R. Wang, X.F. Li and R.L. Wang, 2011. Bifidobacterium longum supplementation improved high-fat-fed-induced metabolic syndrome and promoted intestinal Reg I gene expression. Exp. Biol. Med., 236: 823-831.
CrossRef  |  Direct Link  |  

Considine, R.V., M.K. Sinha, M.L. Heiman, A. Kriauciunas and T.W. Stephens et al., 1996. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. New Engl. J. Med., 334: 292-295.
CrossRef  |  PubMed  |  Direct Link  |  

Ferron, F., R.V. Considine, R. Peino, I.G. Lado, C. Dieguez and F.F. Casanueva, 1997. Serum leptin concentrations in patients with anorexia nervosa, bulimia nervosa and non‐specific eating disorders correlate with the body mass index but are independent of the respective disease. Clin. Endocrinol., 46: 289-293.
CrossRef  |  Direct Link  |  

Fleissner, C.K., N. Huebel, M.M. Abd El-Bary, G. Loh, S. Klaus and M. Blaut, 2010. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br. J. Nutr., 104: 919-929.
CrossRef  |  Direct Link  |  

Friedman, J.M., 2002. The function of leptin in nutrition, weight and physiology. Nutr. Rev., 60: S1-S14.
CrossRef  |  Direct Link  |  

Fukuchi, S., K. Hamaguchi, M. Seike, K. Himeno, T. Sakata and H. Yoshimatsu, 2004. Role of fatty acid composition in the development of metabolic disorders in sucrose induced obese rats. Exp. Biol. Med., 229: 486-493.
PubMed  |  Direct Link  |  

Griffiths, E.A., L.C. Duffy, F.L. Schanbacher, H. Qiao and D. Dryja et al., 2004. In vivo effects of bifidobacteria and lactoferrin on gut endotoxin concentration and mucosal immunity in Balb/c mice. Digestive Dis. Sci., 49: 579-589.
CrossRef  |  Direct Link  |  

Hamad, E.M., M. Sato, K. Uzu, T. Yoshida and S. Higashi et al., 2009. Milk fermented by Lactobacillus gasseri SBT2055 influences adipocyte size via inhibition of dietary fat absorption in Zucker rats. Br. J. Nutr., 101: 716-724.
CrossRef  |  Direct Link  |  

Jequier, E., 2002. Leptin signaling, adiposity and energy balance. Ann. N. Y. Acad. Sci., 967: 379-388.
CrossRef  |  Direct Link  |  

Jumpertz, R., D. Son Le, P.J. Turnbaugh, C. Trinidad, C. Bogardus, J.I. Gordon and J. Krakoff, 2011. Energy-balance studies reveal associations between gut microbes, caloric load and nutrient absorption in humans. Am. J. Clin. Nutr., 94: 58-65.
CrossRef  |  Direct Link  |  

Kang, J.H., S.I. Yun and H.O. Park, 2010. Effects of Lactobacillus gasseri BNR17 on body weight and adipose tissue mass in diet-induced overweight rats. J. Microbiol., 48: 712-714.
CrossRef  |  Direct Link  |  

Kang, J.H., S.I. Yun, M.H. Park, J.H. Park, S.Y. Jeong and H.O. Park, 2013. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PloS One, Vol. 8. 10.1371/journal.pone.0054617.g003

Lee, H.Y., J.H. Park, S.H. Seok, M.W. Baek and D.J. Kim et al., 2006. Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids, 1761: 736-744.
CrossRef  |  PubMed  |  Direct Link  |  

Ma, X., J. Hua and Z. Li, 2008. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J. Hepatol., 49: 821-830.
CrossRef  |  Direct Link  |  

Mathur, S.K., P. Jain and P. Mathur, 2011. Microarray evidences the role of pathologic adipose tissue in insulin resistance and their clinical implications. J. Obesity. 10.1155/2011/587495

Matsuzaki, T., R. Yamazaki, S. Hashimoto and T. Yokokura, 1997. Antidiabetic effects of an oral administration of Lactobacillus casei in a Non-Insulin-Dependent Diabetes Mellitus (NIDDM) model using KK-Ay mice. Endocrine J., 44: 357-365.
CrossRef  |  PubMed  |  Direct Link  |  

McNeil, N.I., 1984. The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr., 39: 338-342.
Direct Link  |  

Million, M., E. Angelakis, M. Paul, F. Armougom, L. Leibovici and D. Raoult, 2012. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microbial Pathogen., 53: 100-108.
CrossRef  |  Direct Link  |  

Murphy, E.F., P.D. Cotter, S. Healy, T.M. Marques and O. O'Sullivan et al., 2010. Composition and energy harvesting capacity of the gut microbiota: Relationship to diet, obesity and time in mouse models. Gut, 59: 1635-1642.
CrossRef  |  PubMed  |  Direct Link  |  

Naito, E., Y. Yoshida, K. Makino, Y. Kounoshi, S. Kunihiro, R. Takahashi and F. Ishikawa, 2011. Beneficial effect of oral administration of Lactobacillus casei strain Shirota on insulin resistance in diet-induced obesity mice. J. Applied Microbiol., 110: 650-657.
CrossRef  |  PubMed  |  Direct Link  |  

Park, Y.H., J.G. Kim, Y.W. Shin, H.S. Kim and Y.J. Kim et al.,. Whang, 2008. Effects of Lactobacillus acidophilus 43121 and a mixture of Lactobacillus casei and Bifidobacterium longum on the serum cholesterol level and fecal sterol excretion in hypercholesterolemia-induced pigs. Biosc. Biotechnol. Biochem., 72: 595-600.
CrossRef  |  PubMed  |  Direct Link  |  

Rao, D.R., C.B. Chawan and S.R. Pulusani, 2006. Influence of milk and Thermophilus milk on plasma cholesterol levels and hepatic cholesterogenesis in rats. J. Food Sci., 46: 1339-1341.
CrossRef  |  Direct Link  |  

Samuel, B.S., A. Shaito, T. Motoike, F.E. Rey and F. Backhed et al., 2008. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl. Acad. Sci. USA., 105: 16767-16772.
CrossRef  |  PubMed  |  Direct Link  |  

Sato, M., K. Uzu, T. Yoshida, E.M. Hamad and H. Kawakami et al., 2008. Effects of milk fermented by Lactobacillus gasseri SBT2055 on adipocyte size in rats. Br. J. Nutr., 99: 1013-1017.
CrossRef  |  PubMed  |  Direct Link  |  

Schmid, C., D.L. Goede, R.S. Hauser and M. Brandle, 2006. Increased prevalence of high body mass index in patients presenting with pituitary tumours: SEVERe obesity in patients with macroprolactinoma. Swiss Med. Weekly, 136: 254-254.
PubMed  |  Direct Link  |  

Semova, I., J.D. Carten, J. Stombaugh, L.C. Mackey, R. Knight, S.A. Farber and J.F. Rawls, 2012. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe, 12: 277-288.
CrossRef  |  Direct Link  |  

Sousa, R., J. Halper, J. Zhang, S.J. Lewis and W.I.O. Li, 2008. Effect of Lactobacillus acidophilus supernatants on body weight and leptin expression in rats. BMC Complem. Altern. Med. Vol. 8. 10.1186/1472-6882-8-5

Suzuki, Y., H. Kaizu and Y. Yamauchi, 1991. Effect of cultured milk on serum cholesterol concentrations in rats fed high cholesterol diets. Anim. Sci. Technol., 62: 565-571.

Usman, A.H., 1999. Bile tolerance, taurocholate deconjugation and binding of cholesterol by Lactobacillus gasseri strains. J. Diary Sci., 82: 243-248.
CrossRef  |  Direct Link  |  

Wang, Z.T., Y.M. Yao, G.X. Xiao and Z.Y. Sheng, 2004. Risk factors of development of gut-derived bacterial translocation in thermally injured rats. World J. Gastroenterol., 10: 1619-1624.
PubMed  |  Direct Link  |  

Xiao, J.Z., S. Kondo, N. Takahashi, K. Miyaji and K. Oshida et al., 2003. Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers. J. Dairy Sci., 86: 2452-2461.
CrossRef  |  PubMed  |  Direct Link  |  

Yadav, H., S. Jain and P.R. Sinha, 2007. Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition, 23: 62-68.
CrossRef  |  PubMed  |  Direct Link  |  

Yin, Y.N., Q.F. Yu, N. Fu, X.W. Liu and F.G. Lu, 2010. Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J. Gastroenterol., 16: 3394-3401.
CrossRef  |  PubMed  |  Direct Link  |  

Zarfeshani, A., H. Khaza'ai, R.M. Ali, Z. Hambali, K.W.J. Wahle and M.S.A. Mutalib, 2011. Effect of Lactobacillus casei on the production of pro-inflammatory markers in streptozotocin-induced diabetic rats. Probiotics Antimicrob. Proteins, 3: 168-174.
CrossRef  |  Direct Link  |  

©  2020 Science Alert. All Rights Reserved