Subscribe Now Subscribe Today
Research Article
 

Production of Lactic Acid by a Local Isolate of Lactobacillus plantarum Using Cheap Starchy Material Hydrolysates



Amal Kadhim G. Al-Asady
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Some cheap starchy materials like sorghum grains and wheat bran were degraded by crude glucoamylase of a local isolate of Mucor sp., then Lactic Acid (LA) was produced by a local isolate of L. plantarum using sorghum flour hydrolysate, sorghum starch hydrolysate, soluble starch hydrolysate, wheat bran hydrolysate and date syrup with 10% reducing sugars. The yield of LA increased to 37.2 g/100 reducing sugars by using sorghum flour hydrolysate as a basal medium supplemented with (0.6+0.6)% yeast extract+(NH4)2HPO4 and 0.06% MgSO4.7H2O, reducing sugars was 5%. The fermentation temperature was 30°C/96 h. Results indicated that using hydrolysates mixtures of sorghum flour and wheat bran improved LA fermentation. The yield of LA was 92.5 g by using sorghum flour and 50% wheat bran. Paper chromatography indicated that LA was the unique organic acid in the fermented broth.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Amal Kadhim G. Al-Asady , 2012. Production of Lactic Acid by a Local Isolate of Lactobacillus plantarum Using Cheap Starchy Material Hydrolysates. Pakistan Journal of Nutrition, 11: 88-93.

DOI: 10.3923/pjn.2012.88.93

URL: https://scialert.net/abstract/?doi=pjn.2012.88.93

REFERENCES
1:  Adsul, M.G., A.J. Varma and D.V. Gukhale, 2007. Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chem., 9: 58-62.
CrossRef  |  Direct Link  |  

2:  Adthalungrong, C. and S. Temviriyanukul, 2010. Optimization of lactic acid production from tapioca starch hydrolysate by Lactobacillus casei TISTR 453. KKU. Res. J., 15: 436-445.
Direct Link  |  

3:  Aksu, Z. and T. Kutsal, 1986. Lactic acid production from molasses utilizing L. delbrueckii. Biotechnol. Lett., 8: 157-160.

4:  Altaf, M., B.J. Naveena, M. Venkateshwar, E.V. Kumar and G. Reddy, 2006. Single step fermentation of starch to L (+) lactic acid by Lactobacillus amylophilus GV6 in SSF using inexpensive nitrogen sources to replace peptone and yeast extract-optimization by RSM. Proc. Biochem., 41: 465-472.
Direct Link  |  

5:  Amrane, A. and Y.A. Prigent, 1996. A novel concept of bioreactor: Specialized function two-stage continuous reactor and its application to lactose conversion in to lactic acid. J. Biotechnol., 45: 195-203.
Direct Link  |  

6:  Dumbrepatil, A., M. Adsul, S. Chaudhari, J. Khire and D. Gokhale, 2008. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. Delbrueckii mutant Uc-3 in batch fermentation. Applied Environ. Microbiol., 74: 333-335.
CrossRef  |  Direct Link  |  

7:  Fitzpatrick, J.J., M. Ahrens and S. Smith, 2001. Effect of manganese on Lactobacillus casei fermentation to produce lactic acid from whey permeate. Proc. Biochem., 36: 671-675.
CrossRef  |  Direct Link  |  

8:  Hofvendahl, K. and B. Hahn-Hagerdal, 2000. Factors affecting the fermentative lactic acid production from renewable resources. Enzymes Microb. Technol., 26: 87-107.
CrossRef  |  PubMed  |  Direct Link  |  

9:  John, R.P., K.M. Nampoothiri, A.S. Nair and A. Pandey, 2005. L (+) lactic acid production using Lactobacillus casei in solid state fermentation. Biotechnol. Lett., 27: 1685-1688.
PubMed  |  

10:  Kleerebezem, M., J. Boekhorst, R. Kranenburg, D. Molenaar and O.P. Kuipers et al., 2003. Complete genome sequence of Lactobacillus plantarum. WCFS1: Proc. Natl. Acad. Sci. USA., 100: 1990-1995.
PubMed  |  Direct Link  |  

11:  Kwon, S., I.K. Yoo, W.G. Lee, H.N. Chang and Y.K. Chang, 2001. High rate continuous production of lactic acid by Lactobacillus bulgaricusin two-stage membrane cell-cycle bioreactor. Biotechnol. Bioeng., 73: 25-34.

12:  Montet, D., G. Loiseau and N. Kakhia-Rozis, 2006. Microbial Technology of Fermented Vegetables. In: Microbial Biotechnology in Horticulture, Ray, R.C. and O.P. Ward (Eds.). Science Publishers, Inc., New Hampshire, USA, pp: 309-343.

13:  Narayanan, N., P.K. Roychoudhury and A. Srivastava, 2004. L (+) Lactic acid fermentation and its product polymerization. Electron. J. Biotechnol., 7: 167-179.
CrossRef  |  Direct Link  |  

14:  Ohkouchi, Y. and Y. Inoue, 2006. Direct production of L (+) lactic acid from starch and food wastes using Lactobacillus manivotivorans LMG18011. Bioresour. Technol., 97: 1554-1562.
Direct Link  |  

15:  Panda, S.H. and R.C. Ray, 2008. Direct conversion of raw starch to lactic acid by Lactobacillus plantarum MTCC 1407 in semi-solid fermentation using sweet potato (Ipomoea batatas L.) flour. J. Sci. Industrial Res., 67: 531-537.

16:  Qi, B.K., R. Yao, M. Lai and S. Deng, 2009. Effect of tween 80 on lactic acid by Lactobacillus casei. Songklanakarin J. Sci. Technol., 42: 85-89.

17:  Rogosa, M., 1974. Lactobacillus. In: Bergys Manual of determinative Bacteriology, Buchanan, R.E. and N.E. Gibbons (Eds.). The Williams and Wlkins: Co., Baltimore, pp: 576-593.

18:  Shamala, T.R. and K.R. Sreekantiah, 1987. Degradation of starchy substrates by a crude enzyme preparation and utilization of the hydrolysates for lactic acid fermentation. Enzyme Microb. Technol., 9: 726-729.
Direct Link  |  

19:  Shamala, T.R. and K.R. Sreekantiah, 1988. Fermentation of starch hydrolysates by Lactobacillus plantarum. J. Ind. Microbiol., 3: 175-178.
CrossRef  |  Direct Link  |  

20:  Venkatesh, K.V., 1997. Simultaneous saccharification and fermentation of cellulose to lactic acid. Bioresour. Technol., 62: 91-98.
CrossRef  |  Direct Link  |  

21:  Wee, Y.J., J.N. Kim and H.W. Ryu, 2006. Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol., 44: 163-172.
Direct Link  |  

22:  Yang, P. and P. Seib, 1995. Low-input wet milling of grain sorghum for readily accessible starch and animal feed. Cereal Chem., 72: 498-503.
Direct Link  |  

23:  Zhou, S.K., K.T. Shanmugan, L.P. Yomano, T.B. Grabar and L.O. Ingram, 2006. Fermentation of 12% (w/v) glucose to 1.2M lactate by Escherichia coli strain SZ194 using mineral salts medium. Biotechnol. Lett., 28: 663-670.
PubMed  |  

24:  Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31: 426-428.
CrossRef  |  Direct Link  |  

25:  John, R.P., K.M. Nampoothiri and A. Pandey, 2006. Solid-state fermentation for l-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochem., 41: 759-763.
CrossRef  |  

©  2020 Science Alert. All Rights Reserved