Subscribe Now Subscribe Today
Research Article
 

Salt Stress Alleviation in Field Crops Through Nutritional Supplementation of Silicon



Anser Ali, Shahzad M.A. Basra, Safdar Hussain, Javaid Iqbal, M. Ahmad Alias Haji A. Bukhsh and Muhammad Sarwar
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Soil salinity is a huge problem negatively affecting physiological and metabolic processes in plant life, ultimately diminishing growth and yield. Salts taken up by the plants influence the plant growth by inducing adverse effects on different physiological and biochemical processes, including turgor, photosynthesis and enzymatic activities. Mechanisms responsible for reduction in plant growth under salt stress are: (1) Osmotic stress, (2) Specific ion toxicity, (3) Nutritional imbalance and (4) Oxidative stress. Different approaches such as introduction of new genes into genotypes responsible for salt tolerance, screening of large international collections and conduct of field trials on selected genotypes, conventional and non-conventional breeding methods and adequate regulation of mineral nutrients have been employed to enhance salinity tolerance in plants. Saline agriculture and exogenous application of mineral elements including Si has been professed as cost effective approach to ameliorate the salt stress in cereal crops like wheat. Si is categorized as a beneficial element in plant biology. It is unquestionably an important requirement for the normal growth of many plants and must be called as “Quasi essential”. Si amendment also plays a pivotal role to enhance chlorophyll content, stomatal conductance, photosynthesis and rigidity of plants under stressful conditions. There are different mechanisms by which Si mediates salinity tolerance in plants. It maintains the plant water status under saline conditions. It reduces uptake of Na+ by improving K+: Na+ and also alleviates the toxicity of other heavy metals. It application helps to improve the defensive system of the plants by producing anti-oxidants which in turn detoxify reactive oxygen species. Morphological and physiological improvements in plants were observed due to Si deposition within plant body under salt stress conditions. Silicon improves growth and dry matter production under salt stress conditions. Its application also enhances the crop performance against biotic stress. It is, therefore, suggested that supplemental application of Si must be included in salt stress alleviation management techniques.

Services
Related Articles in ASCI
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Anser Ali, Shahzad M.A. Basra, Safdar Hussain, Javaid Iqbal, M. Ahmad Alias Haji A. Bukhsh and Muhammad Sarwar, 2012. Salt Stress Alleviation in Field Crops Through Nutritional Supplementation of Silicon. Pakistan Journal of Nutrition, 11: 735-753.

DOI: 10.3923/pjn.2012.735.753

URL: https://scialert.net/abstract/?doi=pjn.2012.735.753

REFERENCES

1:  Agurie, S., W. Agata, F. Kubota and P.B. Kaufman, 1992. Physiological roles of silicon in photosynthesis and dry matter production in rice plants. I. Effects of silicon and shading treatments. Jpn. J. Crop Sci., 61: 200-206.
Direct Link  |  

2:  Ahmad, R., S.H. Zaheer and S. Ismail, 1992. Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Sci., 85: 43-50.
CrossRef  |  

3:  Akram, M., M. Hussain, S. Akhtar and E. Rasul, 2002. Impact of NaCl salinity on yield components of some wheat accessions/variety. Int. J. Agric. Biol., 4: 156-158.
Direct Link  |  

4:  Akram, M.S., H.U.R. Athar and M. Ashraf, 2007. Improving growth and yield of sunflower (Helianthus annuus L.) by foliar application of potassium hydroxide (KOH) under salt stress. Pak. J. Bot., 39: 769-776.
Direct Link  |  

5:  Al-Aghabary, K., Z. Zhu and Q. Shi, 2005. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence and antioxidative enzyme activities in tomato plants under salt stress. J. Plant Nutr., 27: 2101-2115.
CrossRef  |  Direct Link  |  

6:  Alvarez, J. and L.E. Datnoff, 1999. Economics of silicon. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 9-

7:  Anderson, D.L. and O. Sosa Jr., 2001. Effect of silicon on expression of resistance to sugarcane borer (Diatraea saccharalis L.). J. Am. Soc. Sugarcane Technol., 21: 43-50.
Direct Link  |  

8:  Ando, H., H. Fujii, T. Hayasaka, K. Yokoyama and H. Mayum, 1999. New silicon source for rice cultivation: 3. Growth and yield of wetland rice with reference to silica gel application. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 32-

9:  Asch, F., M. Dingkuhn, K. Dorffling and K. Miezan, 2000. Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica, 113: 109-118.
Direct Link  |  

10:  Ashraf, M. and P.J.C. Harris, 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci., 166: 3-16.
CrossRef  |  Direct Link  |  

11:  Awada, S., W.E. Campbell, L.M. Dudley, J.J. Jurinak and M.A. Khanb, 1995. Interactive effects of sodium chloride, sodium sulfate, calcium sulfate and calcium chloride on snapbean growth, photosynthesis and ion uptake. J. Plant Nutr., 18: 889-900.
CrossRef  |  Direct Link  |  

12:  Bar, Y., A. Apelbaum, U. Kafkafi and R. Goren, 1997. Relationship between chloride and nitrate and its effect on growth and mineral composition of avocado and citrus plants. J. Plant Nutr., 20: 715-731.
CrossRef  |  Direct Link  |  

13:  Becana, M., D.A. Dalton, J.F. Moran, I. Iturbe-Ormaetxe, M.A. Matamoros and M.C. Rubio, 2000. Reactive oxygen species and antioxidants in legume nodules. Physiol. Plant., 109: 372-381.
CrossRef  |  

14:  Belanger, R.R., A. Fawe and J.G. Menzies, 1999. The mode of action of Si as a disease-preventing agent in cucumber. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 6-

15:  Blumwald, E., 2000. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol., 12: 431-434.
CrossRef  |  Direct Link  |  

16:  Bollich, P.K., C.R. Robichaux, D.E. Groth and J.H. Oard, 1999. Si use in Louisiana rice: potential improvements in disease management and grain yield. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 37-

17:  Bradbury, M. and R. Ahmad, 1990. The effect of silicon on the growth of Prosopis juliflora growing in saline soil. Plant Soil., 125: 71-74.
Direct Link  |  

18:  Cai, D., 1999. Effect of silicon fertilization on crop grown in the yellow river alluvial plains of China. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 26-

19:  Cakmak, I., 2005. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci., 168: 521-530.
CrossRef  |  

20:  Cheeseman, J.M., 1988. Mechanism of salinity tolerance in plants. Ann. Rev. Plant Physiol., 87: 547-550.
Direct Link  |  

21:  Chen, J., R.D. Caldwell and C.A. Robinson, 1999. Beneficial effects of silicon on container-grown ornamental plants. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 38-

22:  Cherif, M., A. Asselin and R.R. Belanger, 1994. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology, 84: 236-242.
CrossRef  |  Direct Link  |  

23:  Chinnusamy, V., A. Jagendorf and J.K. Zhu, 2005. Understanding and improving salt tolerance in plants. Crop Sci., 45: 437-448.
Direct Link  |  

24:  Choi, D.W., E.M. Rodriguez and T.J. Close, 2002. Barley Cbf3 gene identification, expression pattern and map location. Plant Physiol., 129: 1781-1787.
CrossRef  |  Direct Link  |  

25:  Cocker, K.M., D.E. Evans and M.J. Hodson, 1998. The amelioration of aluminium toxicity by silicon in higher plants: Solution chemistry or an in planta mechanism? Physiol. Plant., 104: 608-614.
CrossRef  |  

26:  Comba, M.E., M.P. Benavides and M.L. Tomaro, 1998. Effect of salt stress on antioxidant defence system in soybean root nodules. Aust. J. Plant Physiol., 25: 665-671.
CrossRef  |  

27:  Correa-Victoria, F.J., E. Datnoff, K. Okada, D.K. Friesen, J.I. Sanz and G.H. Synder, 1999. Effects of silicon fertilization on disease development and yield of rice in Colombia. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 12-

28:  Cramer, G.R. and R.S. Nowak, 1992. Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt-stressed barley. Physiol. Plant., 84: 600-605.
Direct Link  |  

29:  Cramer, G.R., E. Epstein and A. Lauchli, 1988. Kinetics of root elongation of maize in response to short-term exposure to NaCl and elevated calcium concentration. J. Exp. Bot., 39: 1513-1522.
CrossRef  |  Direct Link  |  

30:  Cuartero, J., A.R. Yeo and T.J. Flowers, 1992. Selection of donors for salt-tolerance in tomato using physiological traits. New Phytologist, 121: 63-69.
CrossRef  |  

31:  Daren, C.W., L.E. Datnoff, G.H. Snyder and F.G. Martin, 1994. Silicon concentration, disease response and yield components of rice genotypes grown on flooded organic histosols. Crop Sci., 34: 733-737.
Direct Link  |  

32:  Datnoff, L.E. and R.I. Nagata, 1999 1999. Influence of silicon and host plant resistance on gray leaf spot development in St. Augustine grass. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 38-

33:  Datnoff, L.E., G.H. Synder and G.H. Korndorfer, 2001. Silicon in Agriculture, Volume 8 (Studies in Plant Science). 1st Edn., Elsevier, Dordrecht, Netherlands, ISBN-13: 978-0444502629, pp: 8

34:  Datnoff, L.E., R.N. Raid, G.H. Snyder and D.B. Jones, 1991. Effect of calcium silicate on blast and brown spot intensities and yields of rice. Plant Dis., 75: 729-732.
Direct Link  |  

35:  Dhindsa, R.S., P. Plumb-Dhindsa and T.A. Thorpe, 1981. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J. Exp. Bot., 32: 93-101.
CrossRef  |  Direct Link  |  

36:  Dionisio-Sese, M.L. and S. Tobita, 2000. Effect of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. J. Plant Physiol., 157: 54-58.
Direct Link  |  

37:  Epstein, E. and A.J. Bloom, 2005. Mineral Nutrition Of Plants: Principles and Perspectives. 2nd Edn., Sinauer Associates, Sunderland, MA, USA., ISBN:13-9780878931729, Pages: 400

38:  Epstein, E., 1999. Solution Culture Techniques. In: Measurement Techniques in Plant Sciences, Hashimoto, Y., P.J. Kramer, H. Nomani and B.R. Strain (Eds.). Academic Press Inc., San Diego, USA., pp: 207-245

39:  Epstein, E., 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50: 641-664.
CrossRef  |  PubMed  |  Direct Link  |  

40:  Epstein, E., 2001. Silicon in Plants: Facts vs. Concepts. In: Silicon in Agriculture, Datnoff, L.E., G.H. Snyder and G.H. Korndorfer (Eds.), Elsevier Science, New York, pp: 1-15

41:  Exley, C., 1998. Silicon in life : A bioinorganic solution to bioorganic essentiality. J. Inorganic Biochem., 69: 139-144.
CrossRef  |  

42:  Feigin, A., E. Pressman, P. Imas and O. Miltau, 1991. Combined effects of KNO3 and salinity on yield and chemical composition of lettuce and Chinese cabbage. Irrigation Sci., 12: 223-230.
CrossRef  |  Direct Link  |  

43:  Feigin, A., I. Rylski, A. Meriri and J. Shalbevet, 1987. Response of melon and tomato plants to chloride-nitrate ratio in saline nutrient solution. J. Plant Nutr., 10: 1787-1794.
Direct Link  |  

44:  Filho, M.P.B., G.H. Snyder, L.E. Datnoff and O.F. de Silva, 1999. Response of upland rice to calcium silicate application. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 19-

45:  Flowers, T.J., 2004. Improving crop salt tolerance. J. Exp. Bot., 55: 307-319.
CrossRef  |  Direct Link  |  

46:  Foyer, C.H., K. Lelandais and K.J. Kunert, 1994. Photooxidative stress in plants. Physiol. Plant., 92: 696-717.
CrossRef  |  

47:  Francois, L. and E. Maas, 1993. Crop Response and Management on Salt Affected Soils. In: Handbook of Plant and Crop Stress, Pessarakli M. (Ed.). Marcel Dekker, Inc., New York, pp: 149-181

48:  Fujii, H., T. Hayasaka, K. Yokoyama and H. Mayum, 1999. New silicon source for rice cultivation; 2. Rooting ability and early growth of wetland rice as affected by Silica gel application to the nursery bed. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 32-

49:  Ghafoor, A., M. Qadir and G. Murtaza, 2004. Salt-Affected Soils: Principles of Management. Allied Book Centre, Lahore, Pakistan Pages: 969-547.

50:  Gong, H., X. Zhu, K. Chen, S. Wang and C. Zhang, 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci., 169: 313-321.
CrossRef  |  Direct Link  |  

51:  Gong, H.J., D.P. Randall and T.J. Flowers, 2006. Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ., 29: 1970-1979.
CrossRef  |  Direct Link  |  

52:  Gong, H.J., K.M. Chen, G.C. Chen, S.M. Wang and C.L. Zhang, 2003. Effect of silicon on growth of wheat under drought. J. Plant Nutr., 26: 1055-1063.
CrossRef  |  

53:  Grattan, S.R. and C.M. Grieve, 1994. Mineral Nutrient Acquisition and Response by Plants Grown in Saline Environments. In: Hand Book of Plant and Crop Stress, Pessarakli, M. (Ed.). Marcel Dekker Inc., New York, USA., pp: 203-226

54:  Grattan, S.R. and C.M. Grieve, 1998. Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78: 127-157.
CrossRef  |  Direct Link  |  

55:  Greenway, H. and R. Munns, 1980. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol., 31: 149-190.
CrossRef  |  Direct Link  |  

56:  Shalata, A. and M. Tal, 1998. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiologia Plantarum, 104: 169-174.
CrossRef  |  Direct Link  |  

57:  Gunes, A., A. Inal, E.G. Bagci and D.J. Pilbeam, 2007. Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant Soil, 290: 103-114.
CrossRef  |  

58:  Halliwell, B. and J.M.C. Gutteridge, 1999. Free Radicals in Biology and Medicine. 3rd Edn., Oxford University Press, Oxford, UK., Pages: 936

59:  Hasegawa, P.M., R.A. Bressan, J.K. Zhu and H.J. Bohnert, 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol., 51: 463-499.
CrossRef  |  Direct Link  |  

60:  Hattori, T., S. Inanaga, H. Araki, P. An, S. Morita, M. Luxova and A. Lux, 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Planta., 123: 459-466.
CrossRef  |  Direct Link  |  

61:  Hernandez, J.A. and M.S. Almansa, 2002. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol. Plant., 115: 251-257.
CrossRef  |  Direct Link  |  

62:  Hilal, M., A.M. Zenoff, G. Ponessa, H. Moreno and E.M. Massa, 1998. Saline stress alters the temporal patterns of xylem differentiation and alternative oxidase expression in developing soybean roots. Plant Physiol., 117: 695-701.
CrossRef  |  Direct Link  |  

63:  Hu, Y. and U. Schmidhalter, 1997. Interactive effects of salinity and macronutrient level on wheat. II. Composition. J. Plant Nutr., 20: 1169-1182.
CrossRef  |  

64:  Hu, Y. and U. Schmidhalter, 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci., 168: 541-549.
CrossRef  |  Direct Link  |  

65:  Li, C.H., X.B. Liu, T.D. Chu and Q. Yang, 1999. Study on the effect of silicon, zinc and manganese nutrition on high-yielding maize seedlings. Soils Fertilizers, 4: 15-17.

66:  Hodson, M.J. and D.E. Evans, 1995. Aluminium/silicon interactions in higher plants. J. Exp. Bot., 46: 161-171.
CrossRef  |  

67:  Ishiguro, K., 1999. Review of research on Japan on the role of Si in conferring resistance against blast disease in rice. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, Florida, USA., pp: 11-

68:  Jacoby, B., 1993. Mechanisms Involved in Salt Tolerance by Plants. In: Hand-Book of Plant and Crop Stresses, Pessarakli, M. (Ed.). Marcel Dekker, New York, USA

69:  Jaleel, C.A., R. Gopi, G. Manivannan and R. Panneerselvam, 2007. Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. To paclobutrazol treatment under salinity. Acta Physiol. Plant., 29: 205-209.
CrossRef  |  

70:  Javid, I.H., A. Wahid and E. Rasul, 2000. Some growth and anatomical studies in the leaf and root of differently salt tolerant pearl millet lines under salinity. J. Plant Physiol., 10: 185-190.

71:  Jiang, Z.T., B. Wang-Chuan, M.G. Fang, J. Zhong-Tao, C.B. Wang and G.F. Mao, 2003. Study on rice silicon nutritious states in Shanghai region and effect of silicon fertilizer. Acta Agric. Shangai., 15: 65-69.

72:  Khan, G.S., 1998. Soil salinity/sodicity status in Pakistan. Soil Survey of Pakistan, Lahore, pp: 59.

73:  Kingston, G., 1999. Silicon is involved in cane yield response to sugar mill waste products. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, Florida, USA., pp: 17-

74:  Korndorfer, G.K., L.E. Datnoff and G.F. Correa, 1999. Influence of silicon on grain discoloration and upland rice growth in four Savanna soils of Brazil. J. Plant Nutr., 22: 93-102.
CrossRef  |  

75:  Kumbhar, C.T. and N.K. Savant, 1999. Recycling of rice plant silicon and potassium on leaf scald agement in rice. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, Florida, USA., pp: 30-

76:  Lea-Cox, J.D. and J.P. Syvertsen, 1993. Salinity reduces water use and nitrate-N-use efficiency of citrus. Ann. Bot., 72: 47-54.
CrossRef  |  

77:  Lee, D.H., Y.S. Kim and C.B. Lee, 2001. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J. Plant Physiol., 158: 737-745.
CrossRef  |  

78:  Lee, K.S., S.B. Ahn, G.S. Rhee, B.Y. Yeon and J.K. Park, 1985. Studies of silica application to nursery beds on rice seedling growth. Res. Rep. Rural Dev. Admin., 27: 23-27.
Direct Link  |  

79:  Liang, Y.C., C. Yong and H. Shi, 2000. Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum. Plant Soil, 114: 275-279.

80:  Liang, Y.C., Q. Chen, Q. Liu, W. Zhang and R. Ding, 2003. Effects of silicon on salinity tolerance of two barley cultivars. J. Plant Physiol., 160: 1157-1164.

81:  Liang, Y., 1999. Effect of silicon on enzyme activity and sodium, potassium and calcium concentration in barely under salt stress. Plant Soil, 209: 217-224.
CrossRef  |  

82:  Liang, Y.C., S.Q. Zhenguo and M. Tongsheng, 1996. Effect of silicon on salinity tolerance of two barley genotypes. J. Plant Nutr., 19: 173-183.

83:  Liang, Y.C., T.S. Ma, F.J. Li and Y.J. Feng, 1994. Silicon availability and response of rice and wheat to silicon in calcareous soils. Commun. Soil Sci. Plant Annal., 25: 2285-2297.
CrossRef  |  

84:  Liang, Y., W. Zhang, Q. Chen and R. Ding, 2005. Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). J. Environ. Exp. Bot., 53: 29-37.
CrossRef  |  

85:  Lin, C.C. and C.H. Kao, 2000. Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul., 30: 151-155.
Direct Link  |  

86:  Linjuan, Z., J. Junping, W. Lijun, L. Min and Z. Fusuo, 1999. Effects of the silicon on the seedling growth of creeping bentgrass and zoysiagrass. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, Florida, USA., pp: 27-

87:  Long, S.P. and N.R. Baker, 1986. Saline Terrestrial Environments. In: Photosynthesis in Contrasting Environments, Baker, N.R. and S.P. Long (Eds.). Elsavier, New York, USA., pp: 63-102

88:  Lopez, C.M.L., H. Takahashi and S. Yamazaki, 2002. Plant-water relations of kidney bean plants treated with NaCl and foliarly applied glycinebetaine. J. Agron. Crop Sci., 188: 73-80.
CrossRef  |  

89:  Lopez, M.V. and S.M.E. Satti, 1996. Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress. Plant Sci., 114: 19-27.
CrossRef  |  Direct Link  |  

90:  Lutts, S., J.M. Kinet and J. Bouharmont, 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78: 389-398.
CrossRef  |  Direct Link  |  

91:  Lynch, J. and A. Lauchli, 1984. Potassium transport in salt-stressed barley roots. Planta, 161: 295-301.
CrossRef  |  Direct Link  |  

92:  Ma, J.F., K. Tamal, N. Yamaji, N. Mitani and S. Konishi et al., 2006. A Si transporter in rice. Nature, 440: 688-691.

93:  Ma, J.F., Y. Miyake and E. Takahashi, 1999. Silicon as a beneficial element for crop plant. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, Florida, USA., pp: 3-

94:  Ma, J.F., Y. Miyake and E. Takahashi, 2001. Silicon as a Beneficial Element for Crop Plant. In: Silicon in Agriculture (Studies in Plant Science, Volume 8), Datnoff, L.E., G.H. Snyder and G.H. Korndorfer (Eds.). Chapter 2, Elsevier, Amsterdam, Netherlands, ISBN-13: 9780080541228, pp: 17-39

95:  Ma, J.F., 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr., 50: 11-18.
CrossRef  |  Direct Link  |  

96:  Marcelis, L.F.M. and J. Van Hooijdonk, 1999. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant Soil, 215: 57-64.
CrossRef  |  

97:  Marschner, H., 1995. Mineral Nutrition of Higher Plants. 2nd Edn., Academic Press, San Diego, CA., USA., ISBN-13: 9780124735439, Pages: 889

98:  Marschner, H., H. Oberle, I. Cakmak and V. Romheld, 1990. Growth enhancement by silicon in cucumber (Cucumis sativus) plants depends on imbalance in phosphorus and zinc supply. Plant Soil, 124: 211-219.
CrossRef  |  

99:  Matichenkov, V.V. and A.A. Kosobrukhov, 2004. Silicon effect on the plant resistance to salt toxicity. Proceedings of the 13th International Soil Conservation Organization Conference, July 4-8, 2004, Brisbane, Australia -

100:  Matichenkov, V.V. and D.V. Calvert, 2002. Silicon as a beneficial element for sugarcane. J. Am. Soc. Sugarcane Technol., 22: 21-30.
Direct Link  |  

101:  Matoh, T., P. Kairusmee and E. Takahashi, 1986. Salt-induced damage to rice plants and alleviation effect of silicate. Soil Sci. Plant Nutr., 32: 295-304.
CrossRef  |  

102:  Meinzer, F.C., Z. Plaut and N.Z. Saliendra, 1994. Carbon isotope discrimination, gas exchange and growth of sugarcane cultivars under salinity. Plant Physiol., 104: 521-526.
PubMed  |  Direct Link  |  

103:  Menezes-Benavente, L., S.P. Kernodle, M. Margis-Pinheiro and J.G. Scandalios, 2004. Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox Rep., 9: 29-36.
PubMed  |  

104:  Menzies, J.G., R.R. Belanger and K.L. Ehret, 1999. Plant related Si research in canada. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 12-

105:  Mitani, N. and J.F. Ma, 2005. Uptake system of silicon in different plant species. J. Exp. Biol., 56: 1255-1261.
CrossRef  |  

106:  Mitsui, S. and H. Takatoh, 1963. Nutritional study of silicon in graminaceous crops (part 1). Soil Sci. Plant Nutr., 9: 7-11.
CrossRef  |  

107:  Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7: 405-410.
CrossRef  |  PubMed  |  Direct Link  |  

108:  Moussa, H.R., 2006. Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Int. J. Agric. Biol., 8: 293-297.

109:  Muir, S.C., B. Khoo, G.F. McCabe, C. Offord, J. Brien and B. Summerell, 1999. Some effects of silicon in potting mixes on growth and protection of plants against fungal diseases. In: Silicon in Agriculture, Datnoff, L.E., G.H. Snyder and G.H. Korndorfer (Eds.), Fort Lauderdale, Florida, USA., pp: 18

110:  Munns, R., 1993. Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant Cell Environ., 16: 15-24.
CrossRef  |  Direct Link  |  

111:  Munns, R., 2002. Comparative physiology of salt and water stress. Plant Cell Environ., 25: 239-250.
CrossRef  |  Direct Link  |  

112:  Munns, R., 2005. Genes and salt tolerance: Bringing them together. New Phytol., 167: 645-663.
CrossRef  |  PubMed  |  Direct Link  |  

113:  Munns, R., R.A. James and A. Lauchli, 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot., 57: 1025-1043.
CrossRef  |  PubMed  |  Direct Link  |  

114:  Murillo-Amador, B., S. Yamada, T. Yamaguchi, E. Rueda-Puente and N. Avila-Serrano et al., 2007. Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. J. Agron. Crop Sci., 193: 413-421.
CrossRef  |  

115:  Nable, R.O., R.C.M. Lance and B. Cartwright, 1992. Uptake of B and Si by barley genotypes with differing susceptibilities to B toxicity. Ann. Bot., 66: 83-90.

116:  Noctor, G., S. Veljovic-Jovanovic and C.H. Foyer, 2000. Peroxide processing in photosynthesis: Antioxidant coupling and redox signalling. Phil. Trans. R. Soc., 355: 1465-1475.
Direct Link  |  

117:  Oertli, J.J., 1991. Nutrient Management Under Water and Salinity Stress. In: Nutrient Management for Sustained Productivity, Bajwa, M.S. and V. Beri (Eds.), Department of Soils Punjab Agriculture Unversity of Ludhiana, India, pp: 138-165

118:  Oliveira, A.M.A., F.X.R. Dovale, F.A. Rodrigues, G.H. Korndorfer and L.E. Datnoff, 1999. Influence of silicon fertilization on powdery mildew development in cucumber. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 24-24

119:  Osuna-Canizalez, F.J., S.K. De Datta and J.M. Bonman, 1991. Nitrogen form and silicon nutrition effects on resistance to blast disease of rice. Plant Soil, 135: 223-231.
CrossRef  |  

120:  Park, C., 1999. Silicon's influence on plants. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 13-

121:  Pessarakli, M. and T.C. Tucker, 1988. Dry matter yield and nitrogen-15 uptake by tomatoes under sodium chloride stress. Soil Sci. Soc. Am. J., 52: 698-700.
Direct Link  |  

122:  Plaut, Z., F.C. Meinzer and E. Federman, 2000. Leaf development, transpiration and ion uptake and distribution in sugarcane cultivars grown under salinity. Plant Soil, 218: 59-69.
CrossRef  |  Direct Link  |  

123:  Prabhu, A.S., M.P.B. Filho, M.C. Filippi, L.E. Datnoff and G.H. Snyder, 1999. Silicon from rice disease perspective in Brazil. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 11-1

124:  Qadir, M. and S. Schubert, 2002. Degradation processes and nutrient constraints in sodic soils. Land Degrad. Dev., 13: 275-294.
CrossRef  |  

125:  Qureshi, R.H. and E.G. Barrett-Lennard, 1998. Saline Agriculture for Irrigated Land in Pakistan: A Handbook. ACIAR, Canberra, Australia, pp: 146

126:  Raven, J.A., 2003. Cycling silicon-the role of accumulation in plants. New Phytol., 158: 419-430.
CrossRef  |  

127:  Raza, S.H., H.R. Athar and M. Ashraf, 2006. Influence of exogenously applied glycinebetaine on the photosynthetic capacity of two differently adapted wheat cultivars under salt stress. Pak. J. Bot., 38: 341-351.
Direct Link  |  

128:  Rhoades, J.D., 1993. Practices to Control Salinity in Irrigated Soil. In: Towards the Rational Use of High Salinity Tolerant Plants, Vol. 2, Leith, H. and A. Al- Asoom (Eds.). Kluwer Academic, USA., pp: 379-389

129:  Richmond, K.E. and M. Sussman, 2003. Got silicon? The non-essential beneficial plant nutrient. Curr. Opin. Plant Biol., 6: 268-272.
CrossRef  |  Direct Link  |  

130:  Rodrigues, F.A., G. Korndorfer, G.F. Correa, G.B. Buki, O.A. Silva and L.E. Datnoff, 1999. Response of six-gramineae species to application of Ca-meta silicate. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 24-24

131:  Rogers, M., C. Grieve and M. Shannon, 2003. Plant growth and ion relations in lucerne Medicago sativa L.) in response to the combined effects of NaCl and P. Plant Soil, 253: 187-194.

132:  Romero-Aranda, M.R., O. Jurado and J. Cuartero, 2006. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J. Plant Physiol., 163: 847-855.
CrossRef  |  PubMed  |  Direct Link  |  

133:  Romero-Aranda, R., T. Soria and S. Cuartero, 2001. Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci., 160: 265-272.
CrossRef  |  Direct Link  |  

134:  Rozeff, N., 1995. Sugarcane and salinity-A review paper. Sugarcane, 5: 8-19.
Direct Link  |  

135:  Rueda-Puente, E.O., J.L. Garcia-Hernandez, P. Preciado-Rangel, B. Murillo-Amador and M.A. Tarazon-Herrera et al., 2007. Germination of Salicornia bigelovii ecotypes under stressing conditions of temperature and salinity and ameliorative effects of plant growth-promoting bacteria. J. Agron. Crop Sci., 193: 167-176.
CrossRef  |  

136:  Sairam, R.K. and A. Tyagi, 2004. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci., 86: 407-421.
Direct Link  |  

137:  Saqib, M., C. Zorb, Z. Rengel and S. Schubert, 2005. Na+ exclusion and salt resistance of wheat (Triticum aestivum) are improved by the expression of endogenous vacuolar Na+/H+ anitporters in roots and shoots. Plant Sci., 169: 959-965.

138:  Saqib, M., J. Akhtar and R.H. Qureshi, 2004. Pot study on wheat growth in saline and waterlogged compacted soil: II. Root growth and leaf ionic relations. Soil Tillage Res., 77: 179-187.
CrossRef  |  Direct Link  |  

139:  Shalata, A. and M. Tal, 1998. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiologia Plantarum, 104: 169-174.
CrossRef  |  Direct Link  |  

140:  Sharma, S.K., Y.C. Joshi and A.R. Bal, 2005. Osmotic and ionic effects in salt sensitive and resistant wheat varieties. Ind. J. Plant Physiol., 27: 153-158.

141:  Shannon, M.C., 1998. Adaptation of plants to salinity. Adv. Agron., 60: 75-119.

142:  Sharpley, A.N., J.J. Meisinger, J.F. Power and D.L. Suarez, 1992. Root extraction of nutrients associated with long-term soil management. Adv. Soil Sci., 19: 151-217.

143:  Shengyi, X., W. Qishan, S. Xia and Q.S. Wang, 1998. Studies on the effect of silicon fertilizer on cotton. China Cotton, 25: 6-7.

144:  Sherazi, A.M. and F.D. Miller, 1999. Root application of potassium silicate reduces feeding damage to sergeant crab apple leaf tissues by adult Japanese beetle. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 40-

145:  Shu, L.Z. and Y.H. Liu, 2001. Effects of silicon on growth of maize seedlings under salt stress. Agro-Environ. Prot., 20: 38-40.

146:  Suhayda, C.G., J.L. Giannini, D.P. Briskin and M.C. Shannon, 1990. Electrostatic changes in Lycopersicon esculentum root plasma membrane resulting from salt stress. Plant Physiol., 93: 471-471.
PubMed  |  Direct Link  |  

147:  Sultana, N., T. Ikeda and R. Itoh, 1999. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ. Exp. Bot., 42: 211-220.
CrossRef  |  

148:  Szabolcs, I., 1989. Salt-affected Soils. CRC Press, Boca Raton, FL., USA

149:  Tabaei-Aghdaei, S.R., P. Harrison and R.S. Pearee, 2000. Expression of dehydration-stress-related genes in the crowns of wheatgrass species (Lophopyrum elongatum (Host) A. Love and Agropyron desertorum (Fisch. ex Link.) Schult.) having contrasting acclimation to salt, cold and drought. J. Plant Cell Environ., 23: 561-571.
CrossRef  |  

150:  Tahir, M.A., Rahmatullah, T. Aziz, M. Ashraf, S. Kanwal and M.A. Maqsood, 2006. Beneficial effects of silicon in wheat under salinity stress-pot culture. Pak. J. Bot., 38: 1715-1722.
Direct Link  |  

151:  Takahashi, E., 1995. Uptake Mode and Physiological Functions of Silica. In: Silicon of Rice Plants, Matsum, T., K. Kumazawa, R. Ishii, K. Ishihase and Hirata (Eds.), Food and Agriculture Policy Research Centre, Tokyo, Japan, pp: 420-433

152:  Takahashi, E., J.F. Ma and Y. Miyake, 1990. The possibility of silicon as an essential element for higher plants. Comments Agric. Food Chem., 2: 99-122.
Direct Link  |  

153:  Talashilkar, S.C., M.B. Jadhav and N.K. Savant, 1999. Effect of Calcium Silicate slag on plant growth, nutrient uptake and yield of sugarcane on two soils of Maharashtra state, India. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 31-31

154:  Talashilkar, S.C. and N.K. Savant, 1999. Calcium silicate slag applied to soil increased yield of rice on Inceptisol of Maharashtra state, India. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 30-

155:  Vitoria, A.P., P.J. Lea and R.A. Azevedo, 2001. Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry, 57: 701-710.
CrossRef  |  Direct Link  |  

156:  Voogt, W. and C. Sonneveld, 1999. Silicon in nutrient solution for soil less grown horticultural crops. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, USA., pp: 5-

157:  Vranova, E., D. Inze and F. Van Breusegem, 2002. Signal transduction during oxidative stress. J. Exp. Bot., 53: 1227-1236.
CrossRef  |  Direct Link  |  

158:  Vorm, P.D.J.V., 1980. Uptake of silicon by five plant species, as influenced by variations in Si supply. J. Plant Soil, 56: 153-156.

159:  Wagenet, R.J., R.R. Rodriguez, W.F. Campbell and D.L. Turner, 1983. Fertilizer and salty water effects on Phaseolus. Agron. J., 75: 161-166.

160:  Wang, S.Y. and G.J. Galletta, 1998. Foliar application of potassium silicate induces metabolic changes in strawberry plants. J. Plant Nutr., 21: 157-167.
CrossRef  |  Direct Link  |  

161:  Watanable, S., T. Fujiwara, T. Yoneyama, W.J. Horst, W.B. Former and V. Romheld, 2001. Effects of silicon nutrition on metabolism and translocation of nutrients in rice plants. Proceedings of the 14th International Plant Nutrition Colloquium, July 28-August 3, 2001, Hannover, Germany, pp: 174-175

162:  Yeo, A.R., S.A. Flowers, G. Rao, K. Welfare, N. Senanayake and T.J. Flowers, 1999. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ., 22: 559-565.
CrossRef  |  Direct Link  |  

163:  Zambrano, C.L., E. Torres, Z. Ortiz and I. Avarez, 1999. Si application for blast control in rice on two soil types from a protuguesa, venezueld. Proceedings of the Conference on Silicon in Agriculture, September 26-30, 1999, Fort Lauderdale, Florida, USA., pp: 451-

164:  Zeng, L. and M.C. Shannon, 2000. Salinity effects on seedling growth and yield components of rice. Crop Sci., 40: 996-1003.
CrossRef  |  Direct Link  |  

165:  Zhu, Z., G. Wei, J. Li, Q. Qian and J. Yu, 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci., 167: 527-533.
Direct Link  |  

166:  Zhu, J.K., 2003. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol., 6: 441-445.
CrossRef  |  Direct Link  |  

167:  Zuccarini, P., 2008. Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biol. Plant., 52: 157-160.
CrossRef  |  Direct Link  |  

©  2022 Science Alert. All Rights Reserved