Subscribe Now Subscribe Today
Research Article
 

Genetic Analysis of Water Stress Tolerance and Various Morpho-Physiological Traits in Zea mays L. Using Graphical Approach



Muhammad Shahid Munir Chohan, Muhammad Saleem, Muhammad Ahsan and Muhammad Asghar
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Fifty inbred lines of Zea mays L. were screened against water stress in glass house experiment. Six inbred lines selected on the basis of various tolerance levels at seedling stage were hybridized in a diallel mating system. The F1 hybrids along with the parents were evaluated in field under normal and water stress regimes to determine the nature and magnitude of genetic variances and heritability estimates. Highly significant (p<0.01) differences were noted among the genotypes for all the traits studied under both regimes. The scaling test disclosed full adequacy for traits like plant height, ear leaf area, grain yield, Cell Membrane Thermostability (CMT) and net Photosynthetic rate (Pn) under normal condition. Similarly characters like ear leaf area, 100-grain weight, cell membrane thermostability and net photosynthetic rate under water stress condition showed additive genetic effect with partial dominance which suggested that these traits might be useful during selection for developing synthetics. The model was partially adequate for anthesis-silking interval and 100-grain weight under normal condition and plant height, anthesis-silking interval and grain yield under moisture deficit condition. Moderate to high heritability estimates for grain yield and yield related parameters revealed maximum ability to transfer the genes to the next generation.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Muhammad Shahid Munir Chohan, Muhammad Saleem, Muhammad Ahsan and Muhammad Asghar, 2012. Genetic Analysis of Water Stress Tolerance and Various Morpho-Physiological Traits in Zea mays L. Using Graphical Approach. Pakistan Journal of Nutrition, 11: 489-500.

DOI: 10.3923/pjn.2012.489.500

URL: https://scialert.net/abstract/?doi=pjn.2012.489.500

REFERENCES
1:  Afarinesh, A., E. Farshadfar and R. Choukan, 2005. Genetic analysis of drought tolerance in maize Zea mays L. using diallel method. Seed Plant, 20: 457-473.

2:  Akbar, M., 2008. Genetic control of high temperature tolerance in Zea mays L. Ph.D. Thesis, University of Agriculture, Faisalabad, Pakistan.

3:  Anonymous, 2010. Economic survey of Pakistan, 2009-2010. Economic Adviser's Wing, Finance Division, Government of Pakistan, Islamabad, Pakistan.

4:  Asefa, B., H. Mohammad and H. Zelleke, 2008. Assessment of water stress tolerance in different maize accessions at germination and early growth stage. Pak. J. Bot., 38: 1571-1579.
Direct Link  |  

5:  Banziger, M., G.O. Edmeades, D. Beck and M. Bellon, 2000. Breeding for Drought and Nitrogen Stress Tolerance in Maize: From Theory to Practice. CIMMYT, Mexico, ISBN-13: 9789706480460, Pages: 68.

6:  Banziger, M. and J.L. Araus, 2007. Recent Advances in Breeding Maize for Drought and Salinity Stress Tolerance. In: Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops, Jenks, M.A., P.M. Hasegawa and S.M. Jain (Eds.). Chapter 23, Springer, Berlin, Germany, pp: 587-601.

7:  Bello, O.B. and G. Olaoye, 2009. Combining ability for maize grain yield and other agronomic characters in a typical southern guinea savanna ecology of Nigeria. Afr. J. Biotechnol., 8: 2518-2522.
Direct Link  |  

8:  Betran, F.J., D. Beck, M. Banziger and G.O. Edmeades, 2003. Genetic analysis of inbred and hybrid grain yield under stress and nonstress environments in tropical maize. Crop Sci., 43: 807-817.
CrossRef  |  Direct Link  |  

9:  Brown, R.H., 1999. Agronomic Implications of C4 Photosynthesis. In: C4 Plant Biology, Sage, R.F. and R.K. Monson (Eds.). Academic Press, San Deigo, CA, USA., ISBN: 9780126144406, pp: 473-507.

10:  Campos, H., M. Cooper, J.E. Habben, G.O. Edmeades and J.R. Schussler, 2004. Improving drought tolerance in maize: A view from industry. Field Crops Res., 90: 19-34.
Direct Link  |  

11:  Chen, G., M. Sagi, S. Weining, T. Krugman, T. Fahima, A.B. Korol and E. Nevo, 2004. Wild barley eibi1 mutation identifies a gene essential for leaf water conservation. Planta, 219: 684-693.
PubMed  |  

12:  Farooq, A., 2008. Analysis of some physio-genetic parameters related to drought tolerance in maize. M.Sc. Thesis, Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.

13:  Farooq, J., 2010. Genetic basis of heat tolerance in bread wheat (Triticum aestivum L.). Ph.D. Thesis, Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.

14:  Guzman, P.S. and K.R. Lamkey, 2000. Effective population size and genetic variability in the BS11 maize population. Crop Sci., 40: 338-346.
Direct Link  |  

15:  Hayman, B.I., 1954. The theory and analysis of diallel crosses. Genetics, 39: 789-809.
Direct Link  |  

16:  Hayman, B.I., 1954. The analysis of variance of diallel tables. Biometrics, 10: 235-244.
Direct Link  |  

17:  Hollington, P.A. and K.A. Steele, 2007. Participatory Breeding for Drought and Salt Tolerant Crops. In: Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops, Jenks, M.A., P.M. Hasegawa and S.M. Jain (Eds.). Springer Verlag, New York, ISBN: 9781402055775, pp: 455-478.

18:  Hussain, I., M. Ahsan, M. Saleem and A. Ahmad, 2009. Gene action studies for agronomic traits in maize under normal and water stress conditions. Pak. J. Agri. Sci., 46: 107-112.
Direct Link  |  

19:  Jinks, J.L., 1954. The analysis of continuous variation in a diallel cross of Nicotiana rustica varieties. Genetics, 39: 767-788.
Direct Link  |  

20:  Katna, G., H.B. Singh, J.K. Sharma and R.K. Mittal, 2005. Components of variation in maize (Zea mays L.). Ann. Biol., 21: 133-136.

21:  Khan, I.A., S. Habib, H.A. Sadaqat and M.H.N. Tahir, 2004. Selection criteria based on seedling growth parameters in maize varies under normal and water stress conditions. Int. J. Agric. Biol., 6: 252-256.
Direct Link  |  

22:  Khodarahmpour, Z., 2011. Genetic control of different traits in maize inbred lines (Zea mays L.) using graphical analysis. Afr. J. Agric. Res., 6: 1661-1666.
Direct Link  |  

23:  Khotyleva, L. and V.A. Lemesh, 1994. Genetic control of morphological and physiological characters of the seedlings in maize. Tsitologiya Genetika, 28: 55-59.

24:  Kumar, P. and S.C. Gupta, 2004. Genetic analysis in maize (Zea mays L.). J. Res. Birsa Agric. Univ., 16: 113-117.

25:  Kuriata, R., W. Kaubiec, J. Adamczyk and H. Cygiert, 2003. Diallel analysis of single hybrids of maize. Biuletyn Inst. Hodowli Aklimatyzacii Roslin, 230: 417-422.

26:  Mather, K. and J.L. Jinks, 1982. Introduction to Biometrical Genetics. Chapman and Hall Ltd., London.

27:  McKee, G.W., 1964. A coefficient for computing leaf area in hybrid corn. Agron. J., 56: 240-242.
Direct Link  |  

28:  Aguiar, A.M., L.A. Carlini-Garcia, A.R. da Silva, M.F. Santos, A.A.F. Garcia, C.L. de Souza Jr., 2003. Combining ability of inbred lines of maize and stability of their respective single-crosses. Scientia Agricola, 60: 83-89.
CrossRef  |  

29:  Mitra, J., 2001. Genetics and genetic improvement of drought resistance in crop plants. Curr. Sci., 80: 758-763.
Direct Link  |  

30:  Moussa, H.R. and S.M. Abdel-Aziz, 2008. Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Aust. J. Crop Sci., 1: 31-36.
Direct Link  |  

31:  Muraya, M.M., C.M. Ndirangu and E.O. Omolo, 2006. Heterosis and combining ability in diallel crosses involving maize (Zea mays) S1 lines. Aust. J. Exp. Agric., 46: 387-394.
Direct Link  |  

32:  Ojo, G.O.S., D.K. Adedzwa and L.L. Bello, 2007. Combining ability estimates and heterosis for grain yield and yield components in maize (Zea mays L.). J. Sustainable Dev. Agric. Environ., 3: 49-57.

33:  Paterniani, E., 1990. Maize breeding in the tropics. Critical Rev. Plant Sci., 9: 125-154.
CrossRef  |  

34:  Pingali, P.I., 2001. CIMMYT 1999-2000 Facts and Trends. Meeting the World Maize Needs: Technological Opportunities and Priorities for the Public Sector. CIMMYT, Mexico, Pages: 60.

35:  Rauf, S. and H.A. Sadaqat, 2008. Identification of physiological traits and genotypes combined to high achene yield in sunflower (Helianthus annuus L.) under contrasting water regimes. Aust. J. Crop. Sci., 1: 23-30.
Direct Link  |  

36:  Richards, R.A., 1996. Defining selection criteria to improve yield under drought. Plant Growth Regul., 20: 157-166.
CrossRef  |  Direct Link  |  

37:  Shabbir, G. and M. Saleem, 2002. Gene action for protein content of maize grain in diallel cross. Pak. J. Seed Technol., 1: 53-58.
Direct Link  |  

38:  Shao, H.B., L.Y. Chu, M.A. Shao and C. Abdul Jaleel and M. Hong-Mei, 2008. Higher plant antioxidants and redox signaling under environmental stresses. Comp. Rend. Biol., 331: 443-451.
CrossRef  |  

39:  Srdic, J., Z. Pajic and S. Drinid-Mladenovic, 2007. Inheritance of maize grain yield components. Maydica, 52: 261-264.
Direct Link  |  

40:  Steel, R.G.D., J.H. Torrie and D.A. Dickey, 1997. Principles and Procedures of Statistics: A Biometrical Approach. 3rd Edn., McGraw Hill Book Co., Inc., New York.

41:  Sullivan, C.Y., 1972. Mechanisms of Heat and Drought Resistance in Grain Sorghum and Methods of Measurement. In: Sorghum in the Seventies, Rao, N.G.P. and L.R. House (Eds.). Oxford and IBH Publishing Co., New Delhi, India, pp: 247-264.

42:  Tabassum, M.I., 2004. Genetics of physio-morphological traits in Zea mays L. under normal and water stress conditions. Ph.D. Thesis, Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.

43:  Tabassum, M.I., M. Saleem, M. Akbar, M.Y. Ashraf and N. Mehmood, 2007. Combining ability studies in maize under normal and drought conditions. J. Agic. Res., 45: 261-268.

©  2020 Science Alert. All Rights Reserved