Subscribe Now Subscribe Today
Abstract
Fulltext PDF
References
Research Article
 

Metabolic and Histological Effects of Different Polyunsaturated Fat Types in the Diet: Omega-3 and Omega-6



Maha Hasan Daghestani, Promy Virk and Ayman EL-Meghawry EL-Kenawy
 
ABSTRACT

The beneficial effects of polyunsaturated fats and omega 3 supplements in human and animal nutrition have been widely discussed and established though clinical and experimental studies. In this study the High-Fat (HF) diet rodent models were used to evaluate the effects high doses of two polyunsaturated fats omega-3 and omega-6 on metabolic parameters and histology of liver and kidney. Male and female Wistar rats were fed High-Fat (HF) diets containing Omega-3 fish oil supplements (HF-F) and Omega-6 corn oil (HF-C) at a level that was equivalent to three times the maximum safe daily dosage and the control group was fed with regular laboratory chow. Body weight and plasma parameters of glucose, cholesterol and triglycerides were measured after a 8 week diet course. Rats fed both the high fat oil based diets (HF-F, HF-C) reported a significantly higher body weight gain than the control group. Plasma triglyceride levels were significantly higher in the high fat diets being highest in the fish oil based diet. Both the high fat diets fed animals (HF-F, HF-C) showed pronounced hepatic micro vesicular steaosis and renal interstitial inflammation in comparison with the control in the histological studies. Thus this study demonstrated that high fat diets with polyunsaturated fats including omega-3 rich fish oil could induce dyslipidemia and obesity in rodent models reflecting signs of metabolic syndrome in the humans.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Maha Hasan Daghestani, Promy Virk and Ayman EL-Meghawry EL-Kenawy, 2012. Metabolic and Histological Effects of Different Polyunsaturated Fat Types in the Diet: Omega-3 and Omega-6. Pakistan Journal of Nutrition, 11: 313-321.

DOI: 10.3923/pjn.2012.313.321

URL: https://scialert.net/abstract/?doi=pjn.2012.313.321

REFERENCES
Aguila, M.B. and C.A. Mandarim-de-Lacerda, 2003. Heart and blood pressure adaptations in Wistar rats fed with different high-fat diets for 18 months. Nutrition, 19: 347-352.
CrossRef  |  Direct Link  |  

Aukema, H.M., T. Yamaguchi, H. Takahashi, D.J. Philbrick and B.J. Holub, 1992. Effects of dietary fish oil on survival and renal fatty acid composition in murine polycystic kidney disease. Nutr. Res., 12: 1383-1392.
Direct Link  |  

Briaud, I., C.L. Kelpe, L.M. Johnson, P.O. Tran and V. Poitout, 2002. Differential effects of hyperlipidemia on insulin secretion in islets of Langerhans from hyperglycemic versus normoglycemic rats. Diabetes, 51: 662-668.
CrossRef  |  

Buettner, R., C.B. Newgard, C.J. Rhodes and R.M. O'Doherty, 2000. Correction of diet-induced hyperglycemia, hyperinsulinemia, and skeletal muscle insulin resistance by moderate hyperleptinemia. J. Mol. Endocrinol., 278: E563-E569.
Direct Link  |  

Buettner, R., I. Ottinger, J. Scholmerich and L.C. Bollheime, 2004. Preserved direct hepatic insulin action in rats with diet-inducedhepatic steatosis. Am. J. Physiol. Endocrinol. Metab., 286: E828-E833.
CrossRef  |  PubMed  |  

Buettner, R., K.G. Parhofer, M. Woenckhaus, C.E. Wrede, L.A. Kunz-Schughart, J. Scholmerich and L.C. Bollheimer, 2006. Defining high-fat-diet rat models: Metabolic and molecular effects of different fat types. J. Mol. Endocrinol., 36: 485-501.
CrossRef  |  

DeLany, J.P., M.M. Windhauser, C.M. Champagne and G.A. Bray, 2000. Differential oxidation of individual dietary fat acids in humans. Am. J. Clin. Nutr., 72: 905-911.
Direct Link  |  

Feskens, E., C. Bowles and D. Kromhout, 1991. Inverse association between fish intake and risk of glucose in tolerance in normoglycemic elderly men and women. Diabetes Care, 14: 935-941.
PubMed  |  

Gaiva, M.H., R.C. Couto, L.M. Oyama, G.E.C. Couto, V.L.F. Silveira, E.B. Ribeiro and C.M.O. Nascimento, 2003. Diets rich in polyunsaturated fatty acids: Effect on hepatic metabolism in rats. Nutrition, 19: 144-149.
CrossRef  |  

Garg, M.L., A. Wierzbicki, M. Keelan, A.B. Thomson and M.T. Clandinin, 1989. Fish oil prevents change in arachidonic acid and cholesterol content in rat caused by dietary cholesterol. Lipids, 24: 266-270.
CrossRef  |  

Gustafson, L.A., F. Kuipers, C. Wiegman, H.P. Sauerwein, J.A. Romijn and A.J. Meijer, 2002. Clofibrate improves glucose tolerance in fat-fed rats but decreases hepatic glucose consumption capacity. J. Hepatol., 37: 425-431.
Direct Link  |  

Hill, J., J. Peters, D. Lin, F. Yakubu, H. Greene and L. Swift, 1993. Lipid accumulation and body fat distribution is influenced by type of dietary fat fed to rats. Int. J. Obes. Relat. Metab. Disord., 17: 223-226.
Direct Link  |  

Holness, M.J., G.K. Greenwood, N.D. Smith and M.C. Sugden, 2003. Diabetogenic impact of long-chain ω-3 fatty acids on pancreatic β-cell function and the regulation of endogenousglucose production. Endocrinology, 144: 3958-3968.
CrossRef  |  

Hooper, L., C.D. Summerbell, J.P. Higgins, R.L. Thompson and N.E. Capps et al., 2001. Dietary fat intake and prevention of cardiovascular disease: Systematic review. Br. Med. J., 322: 757-757.
CrossRef  |  

Hooper, L., R.L. Thompson, R.A. Harrison, C.D. Summerbell and A.R. Ness et al., 2006. Risks and benefits of omega 3 fats for mortality, cardiovascular disease and cancer: Systematic review. Br. Med. J., 332: 752-760.
CrossRef  |  Direct Link  |  

Hun, C., K. Hasegawa, T. Kawabata, M. Kato, T. Shimokawa and Y. Kagawa, 1999. Increased uncoupling protein2 mRNA in white adipose tissue, and decrease in leptin, visceral fat, blood glucose and cholesterol in KK-Ay mice fed with eicosapentaenoic and docosahexaenoic acids in addition to linolenic acid. Biochem. Biophys. Res. Commun., 259: 85-90.
CrossRef  |  

Ide, T., T. Kobayashi, L. Ashakumary, I.A. Rouyera and Y. Takahashia et al., 2000. Comparative effects of perilla and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver. Biochimica Biophysica Acta (BBA)-Mol. Cell Biol. Lipids, 1485: 23-35.
CrossRef  |  PubMed  |  Direct Link  |  

Ikeda, I., J. Cha, T. Yanagita, N. Nakatani, K. Oogami K. Imaizumi and K. Yazawa, 1998. Effects of dietary alphalinolenic, eicosapentaenoic and docosahexaenoic acids on hepatic lipogenesis and beta-oxidation in rats. Biosci. Biotechnol. Biochem., 62: 675-680.
PubMed  |  

Jang, I.S., D.Y. Hwang, K.R. Chae, J.E. Lee and Y.K. Kim et al., 2003. Role of dietary fat type in the development of adiposity from dietary obesity-susceptible Sprague-Dawley rats. Br. J. Nutr., 89: 429-437.
CrossRef  |  PubMed  |  

Jen, K.L., M. Alexander, S. Zhong, K. Rose, P.K.H. Lin and S. Kasim, 1989. Lipid lowering effect of omega-3 fatty acids in genetically obese Zucker rats. Nutr. Res., 9: 1217-1228.
CrossRef  |  

Kim, H.J., M. Takahashi and O. Ezaki, 1999. Fish oil feeding decreases mature Sterol Regulatory Element-Binding Protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver: A possible mechanism for down-regulation of lipogenic enzyme mRNAs. J. Biol. Chem., 274: 25892-25898.
CrossRef  |  

Klaus, A.M., H. Fuhrmann and H.P. Salman, 1995. Peroxidation and antioxidative metabolism of the broiler chicken as influenced by dietary linoleic acid and vitamin E. Arch. Geflugelk, 59: 135-144.

Laaksonen, D.E., L. Niskanen, H.M. Lakka, T.A. Lakka and M. Uusitupa, 2004. Epidemiology and treatment of the metabolic syndrome. Ann. Med., 36: 332-346.
CrossRef  |  

Levy, J.R., J.N. Clore and W. Stevens, 2004. Dietary n-3 polyunsaturated fatty acids decrease hepatic triglycerides in fischer 344 rats. Hepatology, 39: 608-616.

Leyton, J., P.J. Drury and M.A. Crawford, 1987. Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. Br. J. Nutr., 57: 383-393.
CrossRef  |  PubMed  |  Direct Link  |  

Llado, I., M.E. Estrany, E. Rodriguez, B. Amengual, P. Roca and A. Palou, 2000. Effects of cafeteria diet feeding on β 3-adrenoceptor expression and lipolytic activity in white adipose tissue of male and female rats. J. Obes., 24: 1396-1404.
Direct Link  |  

Lu, J., N. Bankovic-Calic, M. Ogborn, M.H. Saboorian and H.M. Aukema, 2003. detrimental effects of a high fat diet in early renal injury are amelioratedby fish oil in Han: SPRD-cy rats. J. Nutr., 133: 180-186.
Direct Link  |  

Luo, J., S.W. Rizkalla, J. Boillot, C. Alamowitch and H. Chaib et al., 1996. Dietary (n-3) polyunsaturated fatty acids improve adipocyte insulin action and glucose metabolism in insulin-resistant rats: Relation to membrane fatty acids. J. Nutr., 126: 1951-1958.
PubMed  |  

Mori, T.A. and L.J. Beilin, 2001. Long-chain omega 3 fatty acids, blood lipids and cardiovascularrisk reduction. Curr. Opin. Lipidol., 12: 11-17.

Nakatani,T., H.J. Kim, Y. Kaburagi, K. Yasuda and O. Ezaki, 2003. A low fish oil inhibits SREBP-1 proteolytic cascade, while a high-fish-oil feeding decreases SREBP-1 mRNA in mice liver: Relationship to anti-obesity. J. Lipid Res., 44: 369-379.
CrossRef  |  

Ogborn, M.R., E. Nitschmann, H. Weiler, D. Leswick and N. Bankovic-Calic, 1999. Flaxseed ameliorates interstitial nephritis in rat polycystic kidney disease. Kidney Int., 55: 417-423.
CrossRef  |  

Oscai, L., M. Brown and W. Miller, 1984. Effect of dietary fat on food intake, growth and body composition in rats. Growth, 48: 415-424.
PubMed  |  

Otto, D.A., C.E. Tsai, J.K. Baltzell and J.T. Wooten, 1991. Apparent inhibition of hepatic triacylglycerol secretion, independent of synthesis, in high-fat fish oil-fed rats: Role for insulin. Biochim. Biophy. Acta, 1082: 37-48.
CrossRef  |  

Pellizzon, M., A. Buison, F. Ordiz, J.L.S. Ana and K.L.C. Jen, 2002. Effects of dietary fatty acids and exercise onbody-weight regulation and metabolismin rats. Obesity Res., 10: 947-955.
CrossRef  |  

Polat, H., I. Karayaylali, Z. Niyazova, N. Seyrek, S. Paydas and Y. Sagliker, 1998. Hypertension, lipid abnormalities and cardiovascular changes in autosomal dominant polycystic kidney disease. Nephron, 78: 369-371.
PubMed  |  

Roca, P., A.M. Rodriguez, P. Oliver, M.L. Bonet, S. Quevedo, C. Pico and A. Palou, 1999. Brown adipose tissue response to cafeteria diet-feeding involves induction of the UCP2 gene and is impaired in female rats as compared to males. Pflugers Arch., 438: 628-634.
CrossRef  |  

Rodriguez, A.M., S. Quevedo-Coli, P. Roca and A. Palou, 2001. Sex-dependent dietary obesity, induction of UCPs and leptin expression in rat adipose tissues. Obes. Res., 9: 579-588.

Simi, B., B. Sempore, M. Mayet and R. Favier, 1991. Additive effects of training and high-fat diet on energy metabolism during exercise. J. Applied Physiol., 71: 197-203.
Direct Link  |  

Simopoulos, A.P., 2008. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med., 233: 674-688.
CrossRef  |  PubMed  |  Direct Link  |  

Wade, G.N., J.M. Gray and T.J. Bartness, 1985. Gonadal influences on adiposity. Int. J. Obes., 9: 83-92.
PubMed  |  

Wang, H., L.H. Storlien and X.F. Huang, 2002. Effects of dietary fat types on body fatness, leptin and ARC leptin receptor, NPY and AgRP mRNA expression. Am. J. Physiol. Endocrinol. Metab., 282: E1352-E1359.
PubMed  |  Direct Link  |  

Woods, S.C., R.J. Seeley, P.A. Rushing, D. D'Alessio and P. Tso, 2003. A controlled high-fat diet induces an obese syndrome in rats 1. J. Nutr., 133: 1081-1087.
PubMed  |  

Yamaguchi, T., V.E. Valli, D. Philbrick, B. Holub, K. Yoshida and H. Takahashi, 1990. Effects of dietary supplementation with (n-3) fatty acids on kidney morphology and the fatty acid composition of phospholipids and triglycerides from mice with polycystic kidney disease. Res. Commun. Chem. Pathol. Pharmacol., 69: 335-351.
PubMed  |  

Yaquoob, P., E.J. Shirington, N. Jeffery, P. Sanderson, D.J. Harvey, E. Newsholme and P.C. Calder, 1995. Comparison of the effects of a range of dietary lipids upon serum and tissue lipid composition in the rat. Int. J. Biochem. Cell Biol., 27: 297-310.
CrossRef  |  Direct Link  |  

Yaspelkis III, B.B., J.R. Davis, M. Saberi, T.L. Smith and R. Jazayeri et al., 2001. Leptin administration improves skeletal muscleinsulin responsiveness in diet-induced insulin-resistant rats. J. Mol. Endocrinol., 280: E130-E142.
Direct Link  |  

©  2019 Science Alert. All Rights Reserved
Fulltext PDF References Abstract