Subscribe Now Subscribe Today
Research Article
 

Isolation, Purification, Characterization and the Possible Involvement of Histidine and Cysteine in the Catalytic Mechanism of Beta-amylase Sourced from Cassava (Manihot esculenta Crantz) Peel



O.O. Ojo and J.O. Ajele
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Beta-amylase is a starch hydrolyzing enzyme which is fondly used in both foods, pharmaceutical and brewing industries to convert starch into maltose. Hence, this study was carried out to isolate, purify, characterize and determine the possible involvement of histidine and cysteine in the catalytic mechanism of beta-amylase sourced from cassava (Manihot esculenta, Crantz) peels. Beta Amylase was obtained from cassava peels and purified by gel filtration and ion exchange chromatography. The homogeneity of the enzyme was established by polyacrylamide gel electrophoresis and its molecular weight by Sodium Dodecyl Sulphate Polyacrylamide Electrophoresis (SDS-PAGE) on 10% gel. The Michealis-Menten constant, Km, maximum velocity, Vmax and Kcat were obtained from Line-Weaver Bulk plot. From the plot of logVmax/km Vs pH, the apparent pk values of 5.21 and 6.58 were obtained. Effects of temperature, pH, salts concentration and temperature on stability of beta amylase activity at pH ranging from 5-8 were determined. The polyacrylamide gel electrophoresis in the presence and absence of SDS produced a single bond. The enzyme was found to have an optimum activity at pH 5 and 60oC. The current work confirmed the presence of beta-amylase in cassava peels and was also found to be thermostable and thermoactive, good enough for some industrial applications.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

O.O. Ojo and J.O. Ajele, 2011. Isolation, Purification, Characterization and the Possible Involvement of Histidine and Cysteine in the Catalytic Mechanism of Beta-amylase Sourced from Cassava (Manihot esculenta Crantz) Peel. Pakistan Journal of Nutrition, 10: 823-830.

DOI: 10.3923/pjn.2011.823.830

URL: https://scialert.net/abstract/?doi=pjn.2011.823.830

REFERENCES
1:  Aiyer, P.V., 2005. Amylases and their applications. Afr. J. Biotechnol., 4: 1525-1529.
Direct Link  |  

2:  Ajele, J.O., 1997. Some physicochemical properties of soyabean β-amylase. Nig. J. Biochem. Mol. Biol., 12: 61-66.

3:  Babu, R., A. Roy, Y. Gupta and M. Gupta, 1977. Fungi associated with deteriorating seeds of Cannabis sativa. Curr. Sci., 46: 719-720.
Direct Link  |  

4:  Babu, K., G.T. Kurup, M.S. Palaniswani, V.P. Polty, G. Padmaja, S. Kabeerathummma and S.V. Pittai, 1996. Kinetic Properties of Sweet Potato β-Amylase. In: Tropical Tuber Crops; Problems, Prospects and Future Strategies, Kurup, G.T. (Ed.). Science Publishers, USA., ISBN:9781886106376 pp: 475-483.

5:  Okolo, B.N., F.S. Ire, L.I. Ezeogu, C.U. Anyanwu and F.J.C. Odibo, 2000. Purification and some properties of a novel raw starch-digesting amylase from Aspergillus carbonarius. J. Sci. Food Agric., 81: 329-336.
Direct Link  |  

6:  Chang, C.T., H.Y. Lion, H.L. Tang and H.Y. Sung, 1996. Activation, purification and properties of beta-amylase from sweet potatoes (Ipomea batatas). Biotechnol. Applied Biochem., 24: 113-118.
Direct Link  |  

7:  Cochrane, M.D., C.M. Duffus, M.J. Allison and G.R. Mackay, 1991. Amylolitic activity in stored potato tubers, estimation using nitrophenyloli-gosaccharides. Potato Res., 134: 325-332.
Direct Link  |  

8:  Evans, D.E., W. Wallace, R.C.M. Lance and L.C. Macleod, 1997. Measurement of beta-amylase in malting barley: Effect of germination and kilning. J. Cereal Sci., 26: 241-250.
Direct Link  |  

9:  Fossi, B.T., F. Tavea and R. Ndjouenkeu, 2005. Production and characterization of a thermostable amylase from ascomycetes yeast strain isolated from starchy soils. Afr. J. Biotechnol., 4: 14-18.
PubMed  |  

10:  Gertler, A. and Y. Birk, 1965. Purification and characterization of P-amylase from soyabeans. Biochem. J., 95: 621-627.

11:  Grime, K.H. and D.E. Briggs, 1995. Release and activation of barley β-amylase. J. Inst. Brewing, 101: 337-343.

12:  Hyun, H.H. and J.G. Zeikus, 1985. General biochemical characterization of Thermostable entracellular (3-amlyase from Clostridium thermosulfurogenes). Applied Environ. Microbiol., 49: 1162-1167.

13:  Lizotte, P.A., C.A. Henson and S.H. Duke, 1990. Purification and characterization of pea epicotyl β-amylase. Plant Physiol., 92: 615-621.

14:  Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall, 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265-275.
PubMed  |  Direct Link  |  

15:  Martinez, T.F., M. Diaz and F.F. Moyano, 2002. Inhibition of amylases present in ruminal particle associated microorganism. J. Sci. Food Agric., 82: 398-404.

16:  Matsui, H., S. Chiba and T.Z. Shimomura, 1977. Purification and some properties of active β-amylase from germinated and ungerminated rice. J. Agric. Biol. Chem., 41: 841-847.

17:  Mikami, B., M. Degano, E.J. Helire and J.C. Sacchettini, 1994. Crystal structure of soyabeans β maltose and Mikami, B morita, Y and fukazawa C: Primary structure and functional roles of of malta active site components and their apparent roles in catalysis. Biochemistry, 33: 7779-7787.

18:  Oboh, G. and J.O. Ajele, 1997. Effects of some metallic chlorides on the activity of β-amylase from sweet potatoes. Nig. J. Biochem. Mol. Biol., 12: 73-75.

19:  Ray, R.R., S.C. Jana, Ray and G.I. Nanda, 1994. B-amylase from Bacillus megateruim. Folia Microbiol., 39: 567-570.

20:  Ray, R.R., 2000. Purificatin and characterization of extracellular β-amylase of Bacillus megaterhin B (6). Acta Microbol. lmmunol. Hung, 47: 29-40.

21:  Saha, B.C. and I.G. Zeikus, 1989. Biotechnology of maltose syrup production. Process Biochem., 22: 78-82.

22:  Sakai, S., 1988. Handbook of Amylase and Related Enzymes. 1st Edn., Amylase Research Society of Japan, Osaka, Japan, pp: 312-325.

23:  Sohn, C.B., S.M. Lee, M.H. Kim, J.H. Ko and K.S. Kim et al., 1996. Purification and characterization of β-amylase from Bacillus polytnyna No 26-1. J. Food Sci., 61: 230-234.

24:  Swamy, M.V., M.S. Ram and G. Seenayya, 1994. β-amylase from Clostridium thermocellum SS 8-a thermophilic, anaerobic, cellulolytic bacterium. Lett. Applied Microbiol., 18: 301-304.
Direct Link  |  

25:  Tanaka, N., D. Mitani and S. Kunigi, 2001. Pressure induced perturbation on the active site of β-amylase monitored from thr sulfhydryl reaction. Biochemistry, 40: 5914-5920.

26:  Weber, K. and M. Osborn, 1969. The relativity of molecular weight determination by Dodecyl sulphate polyacrylamide gel Electrophoresis. J. Biol. Chem., 244: 4406-4412.

27:  Aunstrup, K., 1978. Enzyme of Industrial Interest to Additional Products. In: Annual Reports on Fermentation Process, Parlman, D. (Ed)., Vol. 2, Academic Press Inc., New York, pp: 125-154.

©  2020 Science Alert. All Rights Reserved