Subscribe Now Subscribe Today
Research Article
 

Sonographic Assessment of the Abdominal Wall Thickness in Primary School Children of Dera Ismail Khan, Pakistan



Muhammad Ramzan, Irshad Ali, Muhammad Yaqoob, Faiqah Ramzan, Faiza Ramzan and Muhammad Haris Ramzan
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

The present study was carried out to assess the abdominal wall thickness/abdominal fat in school children (6-11 years) at Dera Ismail Khan Pakistan. Abdominal Ultrasound was the sole criteria for the assessment of abdominal wall thickness. It included 103 school children; 58 (56.31%) boys and 45 (43.68%) girls. 76 (73.79%) were obese and 27 (26.21%) were normal weight children. Thorough clinical examination excluded those with chronic health problems. Body weight status was determined according to Quatelet’s Index and CDC’s gender specific growth charts 2-20 years (2000). Those, having BMI-for-age-percentile 5th-<85th percentile were declared as normal weight and obese with >95th percentile. An ultasononic probe of 7.5MHZ was used to assess the abdominal fat (subcutaneous and preperitoneal) on two points: 2 cm above and 2 cm below umbilicus in the midline. Abdominal wall thickness/abdominal fat were found higher below the umbilicus than above the umbilicus in obese as well as in normal weight children. Maximum thickness of abdominal wall was found below the umbilicus in an obese girl (3.25 cm). Mean, for the abdominal thickness in normal weight children was calculated as 1cm. It is an important indicator for abdominal obesity in children.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Muhammad Ramzan, Irshad Ali, Muhammad Yaqoob, Faiqah Ramzan, Faiza Ramzan and Muhammad Haris Ramzan, 2011. Sonographic Assessment of the Abdominal Wall Thickness in Primary School Children of Dera Ismail Khan, Pakistan. Pakistan Journal of Nutrition, 10: 60-64.

DOI: 10.3923/pjn.2011.60.64

URL: https://scialert.net/abstract/?doi=pjn.2011.60.64

REFERENCES
1:  An, P., T. Rice, I.B. Borecki, L. Perusse and J. Gagnon et al., 2000. Major gene effect on subcutaneous fat distribution in a sedentary population and its response to exercise training: The HERITAGE family study. Am. J. Hum. Biol., 12: 600-609.
CrossRef  |  PubMed  |  

2:  Armellini, F., M. Zamboni, L. Rigo, T. Todesco, I.A. Bergamo-Andreis, C. Procacci and O. Bosello, 1990. The contribution of sonography to the measurement of intra-abdominal fat. J. Clin. Ultrasound, 18: 563-567.
CrossRef  |  PubMed  |  

3:  Armellini, F., M. Zamboni, R. Robbi, T. Todesco, L. Rigo, I.A. Bergami-Andreis and O. Bosello, 1993. Total and intra-abdominal fat measurements by ultrasound and computerized tomography. Int. J. Obes. Relat. Metab. Disord., 17: 209-214.
PubMed  |  

4:  Bonora, E., R. Micciolo, A.A. Ghiatas, J.L. Lancaster, A. Alyassin, M. Muggeo and R.A. De Fronzo, 1995. Is it possible to derive a reliable estimate of human visceral and subcutaneous abdominal adipose tissue from simple anthropometric measurements. Metabolism, 44: 1617-1625.
CrossRef  |  PubMed  |  

5:  Brochu, M., E.T. Poehlman and P.A. Ades, 2000. Obesity, body fat distribution and coronary artery disease. J Cardiopulm Rehabil., 20: 96-108.
PubMed  |  

6:  Cucchi, E., P.M. Piatti, C. Orena, A.E. Pontiroli and E. Martino et al., 1997. Is echography an adequate method for assessing the thickness of intra-abdominal fat: A comparison with computed tomography. Radiol. Med., 94: 329-334.
PubMed  |  

7:  Despres, J.P., A. Nadeau, A. Tremblay, M. Ferland and S. Moorjani et al., 1989. Role of deep abdominal fat in the association between regional adipose tissue distribution and glucose tolerance in obese women. Diabetes, 38: 304-309.
CrossRef  |  

8:  Evans, D.J., R.J. Hoffmann, R.K. Kalkhoff and A.H. Kissebach, 1984. Relationship of body fat topography to insulin sensitivity and metabolic profiles in premenopausal women. Metabolism, 33: 68-75.
CrossRef  |  PubMed  |  

9:  Freedman, D.S., L.K. Khan, W.H. Dietz, S.R. Srinivasan and G.S. Berenson, 2001. Relationship of childhood obesity to coronary heart disease risk factors in adulthood: The Bogalusa heart study. Pediatrics, 108: 712-718.
PubMed  |  Direct Link  |  

10:  Friedland, O., D. Nemet, N. Gorodnitsky, B. Wolach and A. Eliakim, 2002. Obesity and lipid profiles in children and adolescents. J. Pediatr. Endocrinol. Metab., 15: 1011-1016.
PubMed  |  

11:  Vlachos, I.S., A. Hatziioannou, A. Perelas and D.N. Perrea, 2007. Sonographic assessment of regional adiposity. Am. J. R., 189: 1545-1553.
CrossRef  |  

12:  Kanaley, J.A., C. Sames, L. Swisher, A.G. Swick and L.L. Ploutz-Snyder et al., 2001. Abdominal fat distribution in pre- and postmenopausal women: The impact of physical activity, age and menopausal status. Metabolism, 50: 976-982.
CrossRef  |  PubMed  |  

13:  Kannel, W.B., 1985. Lipids, diabetes and coronary heart disease: Insights from the Framingham study. Am. Heart J., 110: 1100-1107.
CrossRef  |  PubMed  |  

14:  Kim S.K., H.J. Kim, K.Y. Hur, S.H. Choi and C.W. Ahn et al., 2004. Visceral fat thickness measured by ultrasonography can estimate not only visceral obesity but also risks of cardiovascular and metabolic diseases. Am. J. Clin. Nutr., 79: 593-599.
PubMed  |  Direct Link  |  

15:  Mook-Kanamori, D.O., S. Holzhauer, L.M. Hollestein, B. Durmus and R. Manniesing et al., 2009. Abdominal fat in children measured by ultrasound and computed tomography. Ultrasound Med. Biol., 35: 1938-1946.
CrossRef  |  PubMed  |  

16:  Ribeiro-Filho, F.F., A.N. Faria, S. Azjen, M.T. Zanella and S.R. Ferreira, 2003. Methods of estimation of visceral fat: Advantages of ultrasonography. Obesity Res., 11: 1488-1494.
CrossRef  |  PubMed  |  

17:  Ronnemaa, T., M. Koskenvuo, J. Marniemi, T. Koivunen and A. Sajantila et al., 1997. Glucose metabolism in identical twins discordant for obesity. The critical role of visceral fat. J. Clin. Endocrinol. Metab., 82: 383-387.
CrossRef  |  PubMed  |  

18:  Ross, R., L. Fortier and R. Hudson, 1996. Separate associations between visceral and subcutaneous adipose tissue distribution, Insulin and glucose levels in obese women. Diabetes Care, 19: 1404-1411.
CrossRef  |  PubMed  |  

19:  Rossner, S., W.J. Bo, E. Hiltbrandt, W. Hinson and N. Karstaedt et al., 1990. Adipose tissue determinations in cadavers-a comparison between cross-sectional planimetry and computed tomography. Int. J. Obesity, 14: 893-902.
PubMed  |  Direct Link  |  

20:  Seidell, J.C., M. Cigolini, J. Charzewska, B.M. Ellsinger, J.P. Deslypere and A. Cruz, 1992. Fat distribution in European men: A comparison of anthropometric measurements in relation to cardiovascular risk factors. Int. J. Obes. Relat. Metab. Disord., 16: 17-22.
PubMed  |  

21:  Semiz, S., E. Ozgoren and N. Sabir, 2007. Comparison of ultrasonographic and anthropometric methods to assess body fat in childhood obesity. Int. J. Obesity, 31: 53-58.
CrossRef  |  PubMed  |  

22:  Serap, S., E. Ozgoran, N. Sabir and E. Semiz, 2008. Body fat distribution in childhood obesity: Association with metabolic risk factors. Indian Pediatr., 45: 457-462.
PubMed  |  Direct Link  |  

23:  Sinha, R., G. Fisch, B. Teague, W.V. Tamborlane and B. Banyas et al., 2002. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N. Engl. J. Med., 346: 802-810.
CrossRef  |  PubMed  |  Direct Link  |  

24:  Stolk, R.P., R. Meijer, W.P. Mali, D.E. Grobbee and Y. van der Graaf, 2003. Ultrasound measurements of intraabdominal fat estimate the metabolic syndrome better than do measurements of waist circumference. Am. J. Clin. Nutr., 77: 857-860.
Direct Link  |  

25:  Suzuki, R., S. Watanabe, Y. Hirai, K. Akiyama and T. Nishide et al., 1993. Abdominal wall fat index, estimated by ultrasonography, for assessment of the ratio of visceral fat to subcutaneous fat in the abdomen. Am. J. Med., 95: 309-314.
PubMed  |  Direct Link  |  

26:  Tomaghi, G., R. Raiteri, C. Pozzato, A. Rispoli, M. Bramani, M. Cipolat and A. Craveri, 1994. Anthropometric or ultrasonic measurements in assessment of visceral fat: A comparative study. Int. J. Obes. Relat. Metab. Disord., 18: 771-775.
PubMed  |  

27:  Vanderburgh, P.M., 1992. Fat distribution: Its physiological significance, health implications and its adaptation to exercise training. Mil Med., 157: 189-192.
PubMed  |  

28:  Wajchenberg, B.L., 2000. Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocrine Rev., 21: 697-714.
CrossRef  |  PubMed  |  

29:  Williams, M.J., G.R. Hunter, T. Kekes-Szabo, M.S. Trueth, S. Snyder, L. Berland and T. Blaudeau, 1996. Intra-abdominal adipose tissue cut-points related to elevated cardiovascular risk in women. Int. J. Obes. Relat. Metab. Disord., 20: 613-617.
PubMed  |  

30:  Wei, M., S.P. Gaskill, S.M. Haffner and M.P. Stern, 1997. Waist circumference as the best predictor of noninsulin dependent diabetes mellitus (NIDDM) compared to body mass index, waist/hip ratio and other anthropometric measurements in mexican Americans-a 7-year prospective study. Obes. Res., 5: 16-23.
PubMed  |  

31:  Shen, W., Z. Wang, M. Punyanita, J. Lei and A. Sinav et al., 2003. Adipose tissue quantification by imaging methods: A proposed classification. Obese Res., 11: 5-8.
PubMed  |  Direct Link  |  

32:  Yano, K., K. Hosokawa, K. Nakai, T. Kubo and Y. Matsuo, 2003. Regional differences in ultrasonic assessment of subcutaneous fat thickness in the abdomen: Effects on the TRAM flap. Ann Plast Surg., 51: 130-135.
PubMed  |  Direct Link  |  

©  2020 Science Alert. All Rights Reserved