Subscribe Now Subscribe Today
Research Article
 

Nutritional Potential of Bambara Bean Protein Concentrate



Martin Alain Mune Mune, Samuel Rene Minka, Israel Lape Mbome and F.-X. Etoa
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Bambara bean protein concentrate was prepared under optimum conditions previously determined. Concentrate yield (27.12%) and protein yield (84.35%) were high. The concentrate had 70.85% protein and 13.15% lipid. Water-soluble compounds were removed in abundance from the flour, during the protein extraction. Bambara bean protein concentrate had similar levels of Fe and Zn as the flour. Antinutritional factors were significantly (p<0.05) reduced in the concentrate. The concentrate showed significantly (p<0.05) higher protein digestibility than the flour and had balanced amino acids contents with respect to the FAO/WHO pattern. Lysine and leucine were the predominant essential amino acids. The protein extraction process removed sulphur- and tryptophan-rich proteins. This affected the chemical score (26.80%), protein digestibility corrected amino acid score (25.40%), essential amino acid index (60.44%) and calculated biological value (54.18%) of the protein concentrate, which were lower than those of the flour.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Martin Alain Mune Mune, Samuel Rene Minka, Israel Lape Mbome and F.-X. Etoa, 2011. Nutritional Potential of Bambara Bean Protein Concentrate. Pakistan Journal of Nutrition, 10: 112-119.

DOI: 10.3923/pjn.2011.112.119

URL: https://scialert.net/abstract/?doi=pjn.2011.112.119

REFERENCES
1:  Akeson, W.F. and M.A. Stahman, 1964. A pepsin-pancreatin digest index of protein quality evaluation. J. Nutr., 83: 257-257.

2:  Alsmeyer, R.H., A.E. Cunningham and M.L. Happich, 1974. Equations predict PER from amino acid analysis. Food Technol., 28: 34-38.
Direct Link  |  

3:  Ant'Anna, F.R., E.R. Vilela and J.C. Gomes, 1985. Obtention, characterization and functional properties of protein isolates of pigeon pea (Cajanus cajan). Ciencia E Tech. DE Alim., 5: 94-110.

4:  AOAC., 1990. Official Methods of Analysis. 15th Edn., Association of Official Analytical Chemists, Washington, DC., USA., pp: 200-210.

5:  Besancon, P., 1999. Safety of Complementary Foods and Bioavailability of Nutrients. In: Complementary Feeding of Young Children in Africa and the Middle East, Dop, M.C., D. Benbouzid, S. Treche, B. de Benoist, A. Verster and F. Delpeuch (Eds.). World Health Organisation, Geneva, pp: 59-73.

6:  Bhatty, R.S. and A.J. Finlayson, 1973. Extraction of non-protein nitrogen from oilseed meals with different solvents. Cer. Chem., 50: 329-330.

7:  Cerning, J. and A. Guilhot, 1973. Change in carbohydrate composition during maturation of wheat and barley kernel. Cer. Chem., 50: 220-232.

8:  Chavan, U.D., D.B. Mckenzie and F. Shahidi, 2001. Functional properties of protein isolates from beach pea (Lathyrus maritimus L.). Food Chem., 74: 177-187.
CrossRef  |  Direct Link  |  

9:  Chavan, U.D., D.B. McKenzie and F. Shahidi, 2001. Protein classification of beach pea (Lathyrus maritimus L.). Food Chem., 75: 145-153.
CrossRef  |  

10:  Pei, C., Andrew and J. Stuart, 2003. Protein quality and physico-functionality of Australian sweet lupin (Lupinus angustifolius cv. Gungurru) protein concentrates prepared by isoelectric precipitation or ultrafiltration. Food Chem., 83: 575-583.
Direct Link  |  

11:  Clemente, A., R. Sanchez-Vioque, J. Vioque, J. Bautista and F. Millan, 1998. Effect of cooking on protein quality of chickpea (Cicer arietinum L.) seeds. Food Chem., 62: 1-6.
CrossRef  |  

12:  Deosthale, Y.G., V.S. Mohan and K.V. Rao, 1970. Varietal deficiencies in protein lysine and leucine content of gram sorghum. J. Agric. Food Chem., 18: 644-646.
CrossRef  |  Direct Link  |  

13:  El-Adawy, T.A., E.H. Rahma, A.A. El-Bedawey and A.F. Gafar, 2001. Nutritional potential and functional properties of sweet and bitter lupin seed protein isolates. Food Chem., 74: 455-462.
CrossRef  |  Direct Link  |  

14:  FAO/WHO, 1991. Protein Quality Evaluation. Food and Agricultural Organization of the United Nations, Rome, Italy..

15:  Glew, R.H., D.J. VanderJagt, C. Lockett, L.E. Grivetti, G.C. Smith, A. Pastuszyn and M. Millson, 1997. Amino acid, fatty acid and mineral composition of 24 indigenous plants of Burkina faso. J. Food Compost. Anal., 10: 205-217.
CrossRef  |  Direct Link  |  

16:  Griffiths, D.W., 1984. The trypsin and chymotrypsin inhibitor activities of various pea (Pisum spp.) and field bean (Vicia faba) cultivars. J. Sci. Food Agric., 35: 481-486.
CrossRef  |  Direct Link  |  

17:  Hurrell, R.F., P. Lerman and K.J. Carpenter, 1979. Reactive lysine in foodstuffs as measured by a rapid dye-binding procedure. J. Food Sci., 44: 1221-1227.
CrossRef  |  Direct Link  |  

18:  Itabashi, E., 1985. Spectroelectrochemical characterization of iron (III)-thiocyanate complexes in acidic thiocyanate solutions at an optically transparent thin-layer-electrode cell. Inorg. Chem., 24: 4024-4027.
CrossRef  |  Direct Link  |  

19:  Lin, M.J.Y., E.S. Humbert and F.W. Sosulski, 1974. Certain functional properties of sunflower meal products. J. Food Sci., 39: 368-370.
CrossRef  |  

20:  Longstaff, M.A. and J.M. McNab, 1991. The effect of concentration of tannin-rich bean hulls (Vicia faba L.) on activities of lipase (EC 3.1.1.3) and alpha-amylase (EC 3.2.1.1) in digesta and pancreas on the digestion of lipid and starch by young chicks. Br. J. Nutr., 66: 139-147.
PubMed  |  Direct Link  |  

21:  Lqari, H., J. Vioque, J. Pedroche and F. Millan, 2002. Lupinus angustifolius protein isolates: Chemical composition, functional properties and protein characterization. Food Chem., 76: 349-356.
CrossRef  |  

22:  Ma, C.Y., 1983. Chemical characterization and functionality assessment of protein concentrates from oats. Cer. Chem., 60: 36-42.

23:  Matthaus, B., 2002. Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agric. Food Chem., 50: 3444-3452.
CrossRef  |  Direct Link  |  

24:  Minka, S.R. and M. Bruneteau, 2000. Partial chemical composition of bambara pea [Vigna subterranea (L.) Verde]. Food Chem., 68: 273-276.
CrossRef  |  

25:  Minka, S.R., C.M.F. Mbofung, C. Gandon and M. Bruneteau, 1999. The effect of cooking with kanwa alkaline salt on the chemical composition of black beans (Phaseolus vulgaris). Food Chem., 64: 145-148.
CrossRef  |  

26:  Mwasaru, M.A., K. Muhammad, J. Bakar, B. Yaakob and C. Man, 1999. Effects of isolation technique and conditions on the extractability, physicochemical and functional properties of pigeonpea (Cajanus cajan) and cowpea (Vigna unguiculata) protein isolates. I. Physicochemical properties. Food Chem., 67: 435-443.
CrossRef  |  

27:  Naczk, M., L.L. Diosady and L.J. Rubin, 1985. Functional properties of canola meals produced by two phase solvent extraction system. J. Food Sci., 50: 1685-1688.
CrossRef  |  Direct Link  |  

28:  Neto, V.Q., N. Narain, J.B. Silva and P.S. Bora, 2001. Functional properties of raw and heat processed cashew nut (Anarcarduim occidentale L.) kernel protein isolate. Nahrung, 45: 258-262.

29:  Nwokolo, E., 1987. A nutritional assessment of African yam bean Sphenostylis stenocarpa (Hochst ex A. Rich) Harms and Bambara groundnut (Voandzeia subterranea L.). J. Sci. Food Agric., 41: 123-129.
CrossRef  |  Direct Link  |  

30:  Okafor, P.N., C.N. Abara, C.U. Nwabuko and U. Ogbonna, 2002. ssessment of cyanogenic potential, nitrate and nitrite contents and trypsin inibitor activity of some Nigerian Legumes. J. Agric. Food Chem., 50: 4965-4968.
CrossRef  |  Direct Link  |  

31:  Onwuliri, V.A. and J.A. Obu, 2002. Lipids and other constituents of Vigna unguiculata and Phaseolus vulgaris grown in northern Nigeria. Food Chem., 78: 1-7.

32:  Pace, C.N., F. Vajdos, L. Fee, G. Grimsley and T. Gray, 1995. How to measure and predict the molar absorption coefficient of a protein. Prot. Sci., 4: 2411-2423.
PubMed  |  Direct Link  |  

33:  Panasiuk, R., R. Amarowicz, H. Kostyra and L. Sijtsma, 1998. Determination of alpha-amino nitrogen in pea protein hydrolysates: A comparison of three analytical methods. Food Chem., 62: 363-367.
CrossRef  |  Direct Link  |  

34:  Phillips, R.D. and B.W. Abbey, 1989. Composition and flatulence producing potential of commonly eaten Nigerian and American legumes. Food Chem., 33: 271-280.
CrossRef  |  

35:  Rangel, A., K. Saraiva, P. Schwengber, M.S. Narciso, G.B. Domont, S.T. Ferreira and C. Pedrosa, 2004. Biological evaluation of a protein isolate from cowpea (Vigna unguiculata) seeds. Food Chem., 87: 491-499.
CrossRef  |  

36:  Reddy, N.R. and D.K. Salunkhe, 1981. Interaction between phytate, protein and minerals in whey fractions of black gram. J. Food Sci., 46: 564-567.
CrossRef  |  Direct Link  |  

37:  Sanchez-Vioque, R., A. Clemente, J. Vioque, J. Bautista and F. Millan, 1999. Protein isolates from chickpea (Cicer arietinum L.): Chemical composition, functional properties and protein characterization. J. Food Chem., 64: 237-243.
CrossRef  |  Direct Link  |  

38:  Shahidi, F. and M. Naczk, 1989. Effect of processing on the content of condensed tannins in rapeseed meals. J. Food Sci., 54: 1082-1083.
CrossRef  |  Direct Link  |  

39:  Shimelis, E.A. and S.K. Rakshit, 2007. Effect of processing on antinutrients and in vitro protein digestibility of kidney bean (Phaseolus vulgaris L.) varieties grown in East Africa. Food Chem., 103: 161-172.
CrossRef  |  

40:  Siddhuraju, P., K. Vijayakumari and K. Janardhanan, 1996. Chemical composition and nutritional evaluation of an underexploited legume, Acicia nilotica (L.) Del. Food Chem., 57: 385-391.
CrossRef  |  

41:  Singleton, V.L. and J.A. Rossi, 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult., 16: 144-158.
Direct Link  |  

42:  Spackman, D.H., W.H. Stein and S. Moore, 1958. Automatic recording apparatus for use in chromatography of amino acids. Anal. Chem., 30: 1190-1206.
CrossRef  |  Direct Link  |  

43:  Stone, F.E., R.W. Hardy and J. Spinelli, 1984. Autolysis of phytic acid and protein in canola meal (Brassica spp.), wheat bran (Triticum spp.) and fish silage blends. J. Sci. Food Agric., 35: 513-519.
CrossRef  |  Direct Link  |  

44:  Sumner, A.K., M.A. Nielsen and C.G. Youngs, 1981. Production and evaluation of pea protein isolate. J. Food Sci., 95: 364-366.
CrossRef  |  Direct Link  |  

45:  Thompson, D.B. and J.W. Erdman, 1982. Structural model for ferric phytate: Implication for phytic acid analysis. Cer. Chem., 59: 525-525.

46:  Vijayakumari, K., M. Pugalenthi and V. Vadivel, 2007. Effect of soaking and hydrothermal processing methods on the levels of antinutrients and in vitro protein digestibility of Bauhinia purpurea L. seeds. Food Chem., 103: 968-975.
CrossRef  |  Direct Link  |  

47:  Youssef, A.M., 1998. Extractability, fractionation and nutritional value of low and high tannin sorghum proteins. Food Chem., 63: 325-329.
CrossRef  |  

48:  Yusuf, A.A., H. Ayedun and L.O. Sanni, 2008. Chemical composition and functional properties of raw and roasted Nigerian benniseed (Sesamum indicum) and bambara groundnut (Vigna subterranean). Food Chem., 111: 277-282.
CrossRef  |  

49:  Bhandari, M.R., N. Jong-Anurakkun, G. Hong and J. Kawabata, 2008. α-Glucosidase and α-amylase inhibitory activities of nepalese medicinal herb. Food Chem., 106: 247-252.
CrossRef  |  

50:  Lawal, O., K. Adebowale and Y. Adebowale, 2007. Functional properties of native and chemically modified protein concentrates from bambarra groundnut. Food Res. Int., 40: 1003-1011.
CrossRef  |  

51:  Beveridge, T., S.J. Toma and S. Nakai, 1974. Determination of SH-and SS-groups in some food proteins using Ellman's reagent. J. Food. Chem., 39: 49-49.
CrossRef  |  Direct Link  |  

©  2021 Science Alert. All Rights Reserved