Subscribe Now Subscribe Today
Research Article
 

Effects of Cooking on Antioxidant Activities and Polyphenol Content of Edible Mushrooms Commonly Consumed in Thailand



Aikkarach Kettawan, Kunlaya Chanlekha, Ratchanee Kongkachuichai and Rin Charoensiri
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

The effect of boiling on ten edible mushroom varieties was analyzed for antioxidant activities by three different assays (ORAC, FRAP and DPPH) and polyphenol content. The results indicated that the boiling process significantly decreased both antioxidant activities and polyphenol content in all mushroom varieties. Antioxidant activities and the polyphenol content of boiled mushrooms can be ranked from high to low as A. hygrometricus > A. Cylindracea > V. volvacea > L. edodes > P. eryngii. Percent true retention of ORAC, FRAP, DPPH and polyphenol content in cooked tissue of all mushrooms ranged from 21-75%, 17-68%, 23-66% and 21-70%, respectively with the highest value in A. hygrometricus. Antioxidant activities and polyphenol contents were released into the cooking water was approximately 9-31%, 9-50%, 10-48% and 10-39% for ORAC, FRAP, DPPH and polyphenol, respectively. Percent loss of ORAC, FRAP, DPPH values and polyphenol content caused by thermal effect were about 9-64%, 8-60, 5-57% and 13-59%, respectively. Significantly positive correlations were observed between polyphenol and antioxidant activities in both raw and cooked mushrooms. The difference of characteristic structure and shape of each mushroom variety could affect the different loss of antioxidant activities and the polyphenol during the cooking process. Since mushrooms have been used as food and food flavoring material in soups for many years, consuming boiled mushroom tissues as well as their broths to recover some polyphenol and antioxidant activity is recommended.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Aikkarach Kettawan, Kunlaya Chanlekha, Ratchanee Kongkachuichai and Rin Charoensiri, 2011. Effects of Cooking on Antioxidant Activities and Polyphenol Content of Edible Mushrooms Commonly Consumed in Thailand. Pakistan Journal of Nutrition, 10: 1094-1103.

DOI: 10.3923/pjn.2011.1094.1103

URL: https://scialert.net/abstract/?doi=pjn.2011.1094.1103

REFERENCES
1:  Alvarez-Parrilla, E., L.A. de la Rosa, N.R. Martinez and G.A. Gonzalez-Aguilar, 2007. Total phenols and antioxidant activity of commercial and wild mushrooms from Chihuahua, Mexico. Ciencia Tecnologia Alimentaria, 5: 329-334.
CrossRef  |  Direct Link  |  

2:  Amarowicz, R., R.B. Pegg, P. Rahimi-Moghaddam, B. Barl and J.A. Weil, 2004. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem., 84: 551-562.
CrossRef  |  Direct Link  |  

3:  Arabshahi-Delouee, S. and A. Urooj, 2007. Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chem., 102: 1233-1240.
CrossRef  |  Direct Link  |  

4:  Awika, J.M., L.W. Rooney, X. Wu, R.L. Prior and L. Cisneros-Zevallos, 2003. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agric. Food Chem., 51: 6657-6662.
CrossRef  |  Direct Link  |  

5:  Barros, L., M.J. Ferreira, B. Queiros, I.C.F.R. Ferreira and P. Baptista, 2007. Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem., 103: 413-419.
CrossRef  |  Direct Link  |  

6:  Benzie, I.F.F. and J.J. Strain, 1996. The Ferric Reducing Ability of Plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem., 239: 70-76.
CrossRef  |  PubMed  |  Direct Link  |  

7:  Breene, W.M., 1990. Nutritional and medicinal value of specially mushrooms. J. Food Prod., 53: 883-894.

8:  Brenna, O.V. and E. Pagliarini, 2001. Multivariate analysis of antioxidant powder and oplyphenolic composition in red wines. J. Agric. Food Chem., 49: 4841-4844.
PubMed  |  

9:  Burits, M. and F. Bucar, 2000. Antioxidant activity of Nigella sativa essential oil. Phytother. Res., 14: 323-328.
CrossRef  |  PubMed  |  Direct Link  |  

10:  Chang, R., 1996. Functional properties of edible mushrooms. Nutr. Rev., 54: S91-S93.
PubMed  |  

11:  Cheung, L.M., P.C.K. Cheung and V.E.C. Ooi, 2003. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem., 81: 249-255.
CrossRef  |  Direct Link  |  

12:  Cheung, P.C.K., 1996. The hypocholesterolemic effect of extracellular polysaccharide from the submerged fermentation of mushroom. Nutr. Res., 16: 1953-1957.
CrossRef  |  

13:  Cuendet, M., K. Hostettmann, O. Potterat and W. Dyatmiko, 1997. Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Acta, 80: 1144-1152.
CrossRef  |  Direct Link  |  

14:  Fraga, C.G., M.K. Shigenaga, J.W. Park, P. Degan and B.N. Ames, 1990. Oxidative damage to DNA during aging: 8-Hydroxy-20-deoxyguanosine in rat organ DNA and urine. Proc. Nat. Acad. Sci. USA., 87: 4533-4537.
Direct Link  |  

15:  Frankle, E.N. and A.S. Meyer, 2000. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric., 80: 1925-1941.
CrossRef  |  

16:  Gramza, A., S. Khokhar, S. Yoko, A. Gliszczynska-Swiglo, M. Hes and J. Korczak, 2006. Antioxidant activity of tea extracts in lipids and correlation with polyphenol content. Eur. J. Lipid Sci. Technol., 108: 351-362.
Direct Link  |  

17:  Harman, D., 1981. The aging process. Proc. Natl. Acad. Sci. USA., 78: 7124-7128.
Direct Link  |  

18:  Hertog, M.G.L., E.J.M. Feskens, D. Kromhout, M.G.L. Hertog, P.C.H. Hollman, M.G.L. Hertog and M.B. Katan, 1993. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen elderly study. Lancet, 342: 1007-1011.
CrossRef  |  PubMed  |  Direct Link  |  

19:  Huang, D., B. Ou, M. Hampsch-Woodill, J.A. Flanagan and E.K. Deemer, 2002. Development and validation of oxygen radical absorbance capacity assay for lipophillic antioxidants using randomly methylated beta-cyclodextrin as the solubility enhancer. J. Agric. Food Chem., 50: 1815-1821.
CrossRef  |  Direct Link  |  

20:  Huang, D., B. Ou and R.L. Prior, 2005. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem., 53: 1841-1856.
CrossRef  |  PubMed  |  Direct Link  |  

21:  Huang, S.J., S.Y. Tsai and J.L. Mau, 2006. Antioxidant properties of methanolic extracts from Agrocybe cylindracea. LWT Food Sci. Technol., 39: 379-387.
CrossRef  |  

22:  Ismail, A., Z.M. Marjan and C.W. Foong, 2004. Total antioxidant activity and phenolic content in selected vegetables. Food Chem., 87: 581-586.
CrossRef  |  Direct Link  |  

23:  Javanmardi, J., C. Stushnoff, E. Locke and J.M. Vivanco, 2003. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem., 83: 547-550.
CrossRef  |  Direct Link  |  

24:  Kahkonen, M.P., A.I. Hopia, H.J. Vuorela, J.P. Rauha, K. Pihlaja, T.S. Kujala and M. Heinonen, 1999. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem., 47: 3954-3962.
CrossRef  |  PubMed  |  Direct Link  |  

25:  Kaneda, T. and S. Tokuda, 1966. Effect of various mushroom preparations on cholesterol levels in rat. J. Nutr., 90: 371-376.
Direct Link  |  

26:  Kiselova, Y., D. Ivanova, T. Chervenkov, D. Gerova, B. Galunska and T. Yankova, 2006. Correlation between the in vitro antioxidant activity and polyphenol content of aqueous extracts from Bulgarian herbs. Phytother. Res., 20: 961-965.
CrossRef  |  Direct Link  |  

27:  Law, M.R. and J.K. Morris, 1998. By how much does fruit and vegetable consumption reduce the risk of ischaemic heart disease?. Eur. J. Clin. Nutr., 52: 549-556.
Direct Link  |  

28:  Manzi, P., L. Gambelli, S. Marconi, V. Vivanti and L. Pizzoferrato, 1999. Nutrients in edible mushrooms: An inter-species comparative study. Food Chem., 65: 477-482.
CrossRef  |  Direct Link  |  

29:  Sonwa, M.M. and W.A. Konig, 2001. Chemical study of the essential oil of Cyperus rotundus. Phytochemistry, 58: 799-810.
CrossRef  |  

30:  Murphy, E.W., P.E. Criner and B.C. Grey, 1975. Comparison of methods for calculating retentions of nutrients in cooked foods. J. Agric. Food Chem., 23: 1153-1157.
PubMed  |  

31:  Ohira, S., T. Hasegawa, K.I. Hyashi, T. Hoshino, D. Takaoka and H. Nozaki, 1998. Sesquiterpenoids from Cyperus rotundus. Phytochemistry, 47: 1577-1581.
CrossRef  |  

32:  Patthamakanokporn, O., P. Puwastien A. Nitithamyong and P.P. Sirichakwal, 2008. Changes of antioxidant activity and total phenolic compounds during storage of selected fruits. J. Food. Comp. Anal., 21: 241-248.
CrossRef  |  

33:  Perez-Jimenez, J. and F. Saura-Calixto, 2006. Effect of solvent and certain food constituents on different antioxidant capacity assays. Food. Res. Int., 39: 791-800.
CrossRef  |  

34:  Pinelo, M., L. Manzocco, M.J. Nunez and M.C. Nicoli, 2004. Interaction among phenols in food fortification: Negative synergism on antioxidant capacity. J. Agric. Food Chem., 52: 1177-1180.
Direct Link  |  

35:  Pizzale, L., R. Bortolomeazzi, S. Vichi, E. Uberegger and L.C. Conte, 2002. Antioxidant activity of sage (Salvia officinalis and S. fruticosa) and oregano (Origanum onites and O. indercedens) extracts related to their phenolic compound content. J. Sci. Food Agric., 82: 1645-1651.
CrossRef  |  Direct Link  |  

36:  Price, K.R., F. Casuscelli, I.J. Colquhoun and M.J.C. Rhodes, 1998. Composition and content of flavonol glycosides in broccoli florets (Brassica olearacea) and their fate during cooking. J. Sci. Food. Agric., 77: 468-472.
CrossRef  |  

37:  Prior, R.L., H. Hoang, L. Gu and X. Wu and M. Bacchiocca et al., 2003. Assays for hydrophilic and lipophilic Antioxidant capacity (oxygen radical absorbance capacity (ORACFL) of plasma and other biological and food samples. J. Agric. Food Chem., 51: 3273-3279.
CrossRef  |  Direct Link  |  

38:  Prior, R.L., X.L. Wu and K. Schaich, 2005. Standardized methods for the determination of antioxidant capacity and phenolic in foods and dietary supplements. J. Agric. Food. Chem., 53: 4290-4302.
PubMed  |  

39:  Proteggente, A.R., S. Wisemen and F.H.M.M. van de Put, 2003. The Relationship Between the Phenolic Composition and the Antioxidant Activity of Fruits and Vegetables. In: Flavonoids in Health and Disease, Rice-Evans, C.M. and L. Packer (Eds.). Marcel Dekker Inc., New York, USA..

40:  Racchi, M., M. Daglia, C.A. Lanni, A. Papetti, S. Govoni and G. Gazzani, 2002. Antiradical activity of water soluble composition in common diet vegetables. J. Agric. Food. Chem., 50: 1272-1277.
PubMed  |  

41:  Ruiz, A., I. Hermosin-Gutierrez, C. Mardones, C. Vergara and E. Herlitz et al., 2010. Polyphenols and antioxidant activity of calafate (Berberis microphylla) fruits and other native berries from Southern Chile. J. Agric. Food. Chem., 58: 6081-6089.
PubMed  |  

42:  Shon, Y.H. and K.S. Nam, 2001. Antimutagenicity and induction of anticarcinogenic phase II enzymes by basidiomycetes. J. Ethnopharmacol., 77: 103-109.
CrossRef  |  Direct Link  |  

43:  Smith, E.M., J.T. Hoi, J.C. Eissenberg, J.D. Shoemaker and W.S. Neckameyer et al., 2007. Feeding Drosophila a biotin-deficient diet for multiple generations increases stress resistance and lifespan and alters gene expression and histone biotinylation patterns. J. Nutr., 137: 2006-2012.
PubMed  |  

44:  Steinmetz, K.A. and J.D. Potter, 1991. Vegetables, fruit and cancer. I. Epidemiology. Epidemiol. Cancer Causes Control, 2: 325-357.
CrossRef  |  PubMed  |  Direct Link  |  

45:  Suzuki, S. and S. Ohshima, 1974. Influence of shiitake (Lentinus edodes) on human serum cholesterol. Ann. Rep. Natl. Inst. Nutr., 25: 89-94.

46:  Thaipong, K., U. Boonprakob, K. Crosby, L. Cisneros-Zevallos and D.H. Byrne, 2006. Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal., 19: 669-675.
CrossRef  |  Direct Link  |  

47:  Turkmen, N., F. Sari and Y.S. Velioglu, 2005. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem., 93: 713-718.
CrossRef  |  Direct Link  |  

48:  Velioglu, Y.S., G. Mazza, L. Gao and B.D. Oomah, 1998. Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J. Agric. Food Chem., 46: 4113-4117.
CrossRef  |  Direct Link  |  

49:  Wang, L.F. and H.Y. Zhang, 2003. A theoretical investigation on DPPH radical-scavenging mechanism of edaravone. Bioorganic Med. Chem. Lett., 13: 3789-3792.
PubMed  |  Direct Link  |  

50:  Wasser, S.P. and A.L. Weis, 1999. Medicinal properties of substances occurring in higher basidiomycete mushrooms: Current perspective. Int. J. Med. Mushrooms, 1: 31-62.
Direct Link  |  

51:  Zhang, D. and Y. Hamauzu, 2004. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem., 88: 503-509.
CrossRef  |  Direct Link  |  

52:  Zulueta, A., M.J. Esteve and A. Frigola, 2009. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem., 114: 310-316.
CrossRef  |  Direct Link  |  

©  2020 Science Alert. All Rights Reserved