Subscribe Now Subscribe Today
Abstract
Fulltext PDF
References
Research Article
 

Optimization of Ultrasonic Extraction of Polysaccharides from Chinese Malted Sorghum Using Response Surface Methodology



Irakoze Pierre Claver, Haihua Zhang, Qin Li, Zhou Kexue and Huiming Zhou
 
ABSTRACT

Ultrasonic technology was applied for polysaccharides extraction from the Chinese malted sorghum and Response Surface Methodology (RSM) was used to optimize the effects of processing parameters on polysaccharides yields. Three independent variables were ultrasonic power (X1), extraction time (X2) and ratio of water to raw material (X3), respectively. The statistical analysis indicated that three variables and the quadratic of X1 and X2 had significant effects on the yields and followed by the significant interaction effects between the variables of X2 and X3 (p<0.05). A mathematical model with high determination coefficient was gained and could be employed to optimize polysaccharides extraction. The optimal extraction conditions of polysaccharides were determined as follows: Ultrasonic power 600 W, extraction time 4 min, ratio of water to raw material 30 ml/g. Under these conditions, the experimental yield of polysaccharides was 17.08±0.33%, which was agreed closely with the predicted value 17.06%.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Irakoze Pierre Claver, Haihua Zhang, Qin Li, Zhou Kexue and Huiming Zhou, 2010. Optimization of Ultrasonic Extraction of Polysaccharides from Chinese Malted Sorghum Using Response Surface Methodology. Pakistan Journal of Nutrition, 9: 336-342.

DOI: 10.3923/pjn.2010.336.342

URL: https://scialert.net/abstract/?doi=pjn.2010.336.342

REFERENCES
Atkinson, A.C. and A.N. Donev, 1992. Optimum Experimental Designs. Clarendon, Oxford.

Box, G.E.P. and D.W. Behnken, 1960. Some new three level designs for the study of quantitative variables. Technometrics, 2: 455-475.
CrossRef  |  Direct Link  |  

Cacace, J.E. and G. Mazza, 2003. Optimization of extraction of anthocyanins from black currants with aqueous ethanol. J. Food Sci., 68: 240-248.
Direct Link  |  

Cai, W.R., X.H. Gu and J. Tang, 2008. Extraction, purification and characterization of the polysaccharides from opuntia milpa alta. Carbohyd. Polym., 71: 403-410.
CrossRef  |  

Ferreira, S.L.C., R.E. Bruns, H.S. Ferreira, G.D. Matos and J.M. David et al., 2007. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta, 597: 179-186.
CrossRef  |  Direct Link  |  

Forabosco, A., G. Bruno, L. Sparapano, G. Liut, D. Marino and F. Delben, 2006. Pullulans produced by strains of Cryphonectria parasitica-I. Production and characterisation of the exopolysaccharides. Carbohyd. Polym., 63: 535-544.
CrossRef  |  

Ge, Y., Y. Ni, H. Yan, Y. Chen and T. Cai, 2002. Optimization of the supercritical fluid extraction of natural vitamin E from wheat germ using response surface methodology. J. Food Sci., 67: 239-243.
CrossRef  |  Direct Link  |  

Giovanni, M., 1983. Response surface methodology and product optimization. J. Food Technol., 37: 41-45.

Hemwimon, S., P. Pavasant and A. Shotipruk, 2007. Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia. Sep. Purif. Technol., 54: 44-50.
CrossRef  |  Direct Link  |  

Hofmann, R., T. Kappler and C. Posten, 2006. Pilot-scale press electrofiltration of biopolymers. Sep. Purif. Technol., 51: 303-309.
CrossRef  |  

Hromadkova, Z. and A. Ebringerova, 2003. Ultrasonic extraction of plant materials-Investigation of hemicellulose release from buckwheat hulls. Ultrason. Sonochem., 10: 127-133.
CrossRef  |  

Hromadkova, Z., A. Ebringerova and P. Valachovic, 1999. Comparison of classical and ultrasound-assisted extraction of polysaccharides from Salvia officinalis L. Ultrason. Sonochem., 5: 163-168.
CrossRef  |  

Lee, G.D., J.O. Kim and J.H. Kwon, 2005. Optimum conditions for the extraction of effective substances from the stem of Opuntia fiscus-indica. Food Sci. Biotechnol., 14: 190-195.
Direct Link  |  

Li, J.W., S.D. Ding and X.L. Ding, 2007. Optimization of the ultrasonically assisted extraction of polysaccharides from Zizyphus jujuba cv. Jinsixiaozao. J. Food Eng., 80: 176-183.
CrossRef  |  

Li, Q.H. and C.L. Fu, 2005. Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chem., 92: 701-706.

Liyana-Pathirana, C. and F. Shahidi, 2005. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem., 93: 47-56.
CrossRef  |  Direct Link  |  

Liyana-Pathirana, C.M. and F. Shahidi, 2005. Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions. J. Agric. Food Chem., 53: 2433-2440.
CrossRef  |  Direct Link  |  

Mutisya, J., C. Sun, S. Rosenquist, Y. Baguma and C. Jansson, 2009. Diurnal oscillation of SBE expression in sorghum endosperm. J. Plant Physiol., 166: 428-434.
CrossRef  |  

Qiao, D.L., C.L. Kea, B. Hua, J.G. Luo, H. Ye and Y. Sun, 2009. Antioxidant activities of polysaccharides from Hyriopsis cumingii. Carbohyd. Polym., 78: 199-204.
CrossRef  |  

Ravikumar, K., S. Ramalingam, S. Krishnan and K. Balu, 2006. Application of response surface methodology to optimize the process variables for reactive red and acid brown dye removal using a novel absorbent. Dyes Pigments, 70: 18-26.
Direct Link  |  

Rodrigues, S., G.A.S. Pinto and F.A.N. Fernandes, 2008. Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology. Ultrasonics Sonochem., 15: 95-100.
CrossRef  |  PubMed  |  Direct Link  |  

Schepetkin, I.A. and M.T. Quinn, 2006. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol., 6: 317-333.
CrossRef  |  Direct Link  |  

Tsochatzidis, N.A., P. Guiraud, A.M. Wilhelm and H. Delmas, 2001. Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique. Chem. Eng. Sci., 56: 1831-1840.
CrossRef  |  

Velickovic, D.T., D.M. Milenovic, M.S. Ristic and V.B. Veljkovic, 2006. Kinetics of ultrasonic extraction of extractive substances from garden (Salvia officinalis L.) and glutinous (Salvia glutinosa L.) sage. Ultrason. Sonochem., 13: 150-156.
CrossRef  |  

Vinatoru, M., M. Toma, O. Radu, P.I. Filip, D. Lazurca and T.J. Mason, 1997. The use of ultrasound for the extraction of bioactive principles from plant materials. Ultrason. Sonochem., 4: 135-139.
CrossRef  |  Direct Link  |  

Wang, Y.J., Z. Cheng, J.W. Mao, M.G. Fan and X.Q. Wu, 2009. Optimization of ultrasonic-assisted extraction process of Poria cocos polysaccharides by response surface methodology. Carbohyd. Polym., 77: 713-717.
CrossRef  |  

Yang, B., M. Zhao, J. Shi, N. Yang and Y. Jiang, 2008. Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp. Food Chem., 106: 685-690.
CrossRef  |  

Yang, B., Y.M. Jiang, R. Wang, M.M. Zhao and J. Sun, 2009. Ultra-high pressure treatment effects on polysaccharides and lignins of longan fruit pericarp. Food Chem., 112: 428-431.
CrossRef  |  

Yang, C.X., N. He, X.P. Ling, M.L. Ye, C.X. Zhang and W.Y. Shao, 2008. The isolation and characterization of polysaccharides from longan pulp. Sep. Purif. Technol., 63: 226-230.
CrossRef  |  

©  2019 Science Alert. All Rights Reserved
Fulltext PDF References Abstract