Subscribe Now Subscribe Today
Research Article
 

Comparison of Plasma Copper, Iron and Zinc Levels in Hypertensive and Non-hypertensive Pregnant Women in Abakaliki, South Eastern Nigeria



Emmanuel I. Ugwuja, Boniface N. Ejikeme, Nicholas C. Ugwu, Ndudim C. Obeka, Emmanuel I. Akubugwo and Onyechi Obidoa
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

With the increasing speculations of the involvement of nutrition, particularly trace elements in the pathogenesis of preeclampsia, a comparative study of plasma copper, iron and zinc levels was carried out between preeclamptic and non-eclamptic Nigerian women living in Abakaliki, Southeastern Nigeria. Data for 40 preeclamptic and 40 non-eclamptic women matched for age, gestational age, Body Mass Index (BMI), parity and socioeconomic status from a cohort of 349 pregnant women recruited at gestational age <25 weeks for the assessment of impacts of trace elements’ status on pregnancy outcomes were analyzed. In addition to trace elements which were determined by Atomic Absorption Spectrophotometer (Buck Scientific, Model AVG 210), Total White Blood Cell Count (TWBC) and Haemoglobin Concentration (HbC) were determined using standard laboratory techniques. The preeclamptic and the non-eclamptic women had comparable TWBC and HbC with the former having significantly (p < 0.05) higher blood pressure. However, although, the preeclamptic women had lower plasma copper, iron and zinc levels than the non-eclamptic women, only copper was found to be statistically significant (6.02±7.23 vs. 10.23±9.84 μmol/l, p<0.05). It is thus concluded that preeclampsia is associated with significant decrease in plasma copper. Further research is desired to elucidate the role of trace elements, especially copper in the pathogenesis of pregnancy induced hypertension.

Services
Related Articles in ASCI
Similar Articles in this Journal
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Emmanuel I. Ugwuja, Boniface N. Ejikeme, Nicholas C. Ugwu, Ndudim C. Obeka, Emmanuel I. Akubugwo and Onyechi Obidoa, 2010. Comparison of Plasma Copper, Iron and Zinc Levels in Hypertensive and Non-hypertensive Pregnant Women in Abakaliki, South Eastern Nigeria. Pakistan Journal of Nutrition, 9: 1136-1140.

DOI: 10.3923/pjn.2010.1136.1140

URL: https://scialert.net/abstract/?doi=pjn.2010.1136.1140

REFERENCES
1:  ACOG Committee on Obstetric Practice, 2002. ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Int. J. Gynaecol. Obstet., 77: 67-75.
PubMed  |  

2:  Atamer, Y., Y. Kocyigit, B. Yokus, A. Atamer and A.C. Erden, 2005. Lipid peroxidation, antioxidant defense, status of trace metals and leptin levels in preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol., 1: 60-66.
CrossRef  |  PubMed  |  Direct Link  |  

3:  Belizan, J.M., J. Villar, A. Zalazar, L. Rojas, D. Chan and G.F. Bryce, 1983. Preliminary evidence of the effect of calcium supplementation on blood pressure in normal pregnant women. Am. J. Obstet. Gynaecol., 146: 175-180.
PubMed  |  Direct Link  |  

4:  Caughey, A.B., N.E. Stotland, A.E. Washington and G.J. Escobar, 2005. Maternal ethnicity, paternal ethnicity and parental ethnic discordance: Predictors of preeclampsia. Obstet. Gynaecol., 106: 156-161.
PubMed  |  Direct Link  |  

5:  Conlan, D., R. Korula and D. Tallentire, 1990. Serum copper levels in elderly patients with femoral-neck fractures. Age Ageing, 19: 212-214.
CrossRef  |  PubMed  |  Direct Link  |  

6:  Dacie, J.V. and S.M. Lewis, 1994. Practical Haematology. 8th Edn., Churchill Livingstone, Edinburg, ISBN-13: 978-0443049316, pp: 608.

7:  Eaton-Evans, J., E.M. Mellwrath, W.E. Jackson, H. McCartney and J.J. Strain, 1996. Copper supplementation and the maintenance of bone mineral density in middle-aged women. J. Trace Elem. Exp. Med., 9: 87-94.
CrossRef  |  Direct Link  |  

8:  Food and Nutrition Board, Institute of Medicine, 2001. Dietary Reference Intakes for Vitamin A, Vitamin K, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. National Academy Press, Washington, D.C., pp: 442-501.

9:  Fox, P.L., B. Mazumder, E. Ehrenwald and C.K. Mukhopadhyay, 2000. Ceruloplasmin and cardiovascular disease. Free Radic Biol. Med., 28: 1735-1744.
CrossRef  |  

10:  Golmohammad, S., A. Amirabi, M. Yazdian and N. Pashapour, 2008. Evaluation of serum calcium, magnesium, copper and zinc levels in women with pre-eclampsia. Iran J. Med. Sci., 33: 231-234.
Direct Link  |  

11:  Harma, M., M. Harma and A. Kocyigit, 2005. Correlation between maternal plasma homocysteine and zinc levels in preeclamptic women. Biol. Trace Elem. Res., 104: 97-105.
CrossRef  |  PubMed  |  Direct Link  |  

12:  Hube, C.A., 1998. Dyslipidaemia, iron and oxidative stress in preeclampsia: Assessment of maternal and feto-placental interactions. Semin Reprod. Endocrinol., 16: 75-92.
PubMed  |  Direct Link  |  

13:  Ilhan, N., N. Ilhan and M. Simsek, 2002. The changes of trace elements, malondialdehyde levels and superoxide dismutase activities in pregnancy with or without preeclampsia. Clin. Biochem., 35: 393-397.
CrossRef  |  PubMed  |  Direct Link  |  

14:  Jones, A.A., R.A. DiSilvestro, M. Coleman and T.L. Wagner, 1997. Copper supplementation of adult men: Effects on blood copper enzyme activities and indicators of cardiovascular disease risk. Metabolism, 46: 1380-1383.
CrossRef  |  PubMed  |  Direct Link  |  

15:  Kumru, S., S. Aydin, M. Simsek, K. Sahin, M. Yaman and G. Ay, 2003. Comparison of serum copper, zinc, calcium and magnesium levels in preeclamptic and healthy pregnant women. Biol. Trace Elem. Res., 94: 105-112.
PubMed  |  Direct Link  |  

16:  Laivuori, H., R. Kaaja, U. Turpeinen, L. Viinikka and O. Ylikorkala, 1999. Plasma homocysteine levels elevated and inversely related to insulin sensitivity in preeclampsia. Obstet. Gynaecol., 93: 489-493.
CrossRef  |  PubMed  |  Direct Link  |  

17:  Leone, N., D. Courbon, P. Ducimetiere and M. Zureik, 2006. Zinc, copper and magnesium and risks for all-cause, cancer and cardiovascular mortality. Epidemiology, 17: 308-314.
CrossRef  |  PubMed  |  Direct Link  |  

18:  Malek, F., E. Jiresova, A. Dohnalova, H. Koprivova and R. Spacek, 2006. Serum copper as a marker of inflammation in prediction of short term outcome in high risk patients with chronic heart failure. Int. J. Cardiol., 113: E51-E53.
CrossRef  |  PubMed  |  Direct Link  |  

19:  Mohamed, K., M.A. Williams, G.B. Woelk, S. Mudzamiri, S. Madzime and I.B. King, 2000. Leucocyte selenium, zinc and copper concentrations in preeclamptic and normotensive pregnant women. Biol. Trace Elem. Res., 75: 107-118.
CrossRef  |  PubMed  |  Direct Link  |  

20:  Paknahad, Z., N. Talebi and L. Azadbakht, 2008. Dietary determinants of pregnancy induced hypertension in Isfahan. J. Res. Med. Sci., 13: 17-21.
Direct Link  |  

21:  Pipkin, F.B., 2001. Risk factors for preeclampsia. N. Engl. J. Med., 344: 925-926.
Direct Link  |  

22:  Prasad, A.S., 1998. Zinc deficiency in humans: A neglected problem. J. Am. Coll. Nutr., 17: 542-543.
PubMed  |  Direct Link  |  

23:  Roberts, J.M. and C.A. Hubel, 2004. Oxidative stress in preeclampsia. Am. J. Obstet. Gynecol., 190: 1177-1178.
PubMed  |  

24:  Roberts, J.M., 1998. Pregnancy Related Hypertension. In: Maternal Foetal Medicine. Creasy, R.K. and R. Resnik (Eds.). 4th Edn., W.B. Saunders, Philadelphia, pp: 883-872.

25:  Rock, E., A. Mazur, J.M. O'Connor, M.P. Bonham, Y. Rayssiguier and J.J. Strain, 2000. The effect of copper supplementation on red blood cell oxidizability and plasma antioxidants in middle-aged healthy volunteers. Free Radic Biol. Med., 28: 324-329.
CrossRef  |  PubMed  |  

26:  Sarsam, D.S., M. Shamden and R. Al-Wazan, 2008. Expectant versus aggressive management in severe preeclampsia remote from term. Singapore Med. J., 49: 698-703.
PubMed  |  Direct Link  |  

27:  Singh, K., Y.F. Fong and S. Arulkumaran, 1998. Anaemia in pregnancy-a cross sectional study in Singapore. Eur. J. Clin. Nutr., 52: 65-70.
PubMed  |  Direct Link  |  

28:  Skjaerven, R., A. Wilcox and R.T. Lie, 2002. The interval between pregnancies and the risk of preeclampsia. N. Engl. J. Med., 346: 33-38.
PubMed  |  Direct Link  |  

29:  Turley, E., A. McKeown, M. Chopra, L.J. Harvey and M.P. Bonham, 2000. Copper supplementation in humans does not affect the susceptibility of low density lipoprotein to in vitro induced oxidation (FOODCUE project). Free Radic. Biol. Med., 29: 1129-1134.
CrossRef  |  PubMed  |  

30:  Ugwuja, E.I., E.I. Akubugwo, U.A. Ibiam and O. Obidoa, 2010. Impact of maternal copper and zinc status on pregnancy outcomes in a population of pregnant Nigerians. Pak. J. Nutr., 9: 678-682.
CrossRef  |  Direct Link  |  

31:  Ugwuja, E.I., E.I. Akubugwo, U.A. Ibiam, O. Obidoa and N.C. Ugwu, 2010. Plasma copper and zinc among pregnant women in Abakaliki, Southeastern Nigeria. The Internet J. Nutr. Wellness, Vol. 10, No. 1.

32:  Williams, M.A., A. Farrand and R. Mittendorf, 1999. Maternal second trimester serum tumour necrosis factor-α-soluble receptor p55 (sTNFp55) and subsequent risk of preeclampsia. Am. J. Epidemiol., 149: 323-329.
Direct Link  |  

33:  WHO, 1996. Trace Elements in Human Nutrition and Health. WHO, Geneva, ISBN-13: 978-9241561730, pp: 362.

34:  Ziaei, S., S.H.K. Motlagh Bonab and A. Kazemnejad, 2006. Serum lipid levels at 28-32 weeks gestation and hypertensive disorders. Hypertens Preg., 25: 3-10.
PubMed  |  Direct Link  |  

35:  Dekker, G.A. and B.M. Sibai, 1998. Aetiology and pathogenesis of preeclampsia: Current concepts. Am. J. Obstet. Gynaecol., 179: 1359-1375.
PubMed  |  

©  2020 Science Alert. All Rights Reserved