Research Article
 

RAPD analysis of Micropropagated Plantlets in Date Palm



Parisa Eshraghi, Reza Zarghami and Hamideh Ofoghi
 
Facebook Twitter Digg Reddit Linkedin StumbleUpon E-mail
ABSTRACT

Randomly Amplified Polymorphic DNA (RAPD) markers were used to analyze genetic stability of the somatic embryogenesis-derived regenerants (R1-6) and mother plant in Iranian date palm (phoenix dactylifera L.) cultivar Khanizi. Total genomic DNA extracted from in vitro fresh leaves of regenerated plants and mother plant was amplified using 10-mer oligonucleotide Fermantas primers. Four primers of the set A to J primers were selected which revealed polymorphism and gave reproducible results. The genetic similarity between the mother plant and the callus-derived plantlets was ranged between 94% (for R1, R2) and 83% (for R5). Cluster analysis by the unweighted paired group method of arithmetic mean (UPGMA) showed a single large cluster at an estimated similarity coefficient (90.2%).

Services
Related Articles in ASCI
Search in Google Scholar
View Citation
Report Citation

 
  How to cite this article:

Parisa Eshraghi, Reza Zarghami and Hamideh Ofoghi, 2006. RAPD analysis of Micropropagated Plantlets in Date Palm. Pakistan Journal of Biological Sciences, 9: 111-114.

DOI: 10.3923/pjbs.2006.111.114

URL: https://scialert.net/abstract/?doi=pjbs.2006.111.114

REFERENCES

  1. Javouhey, M., F. Daguin and R. Letouze, 2000. Somatic embryogenesis, An efficient tool for date palm (phoenix dactylifera L.) industrial micropropagation. Characterization and genetic stability of original offshoots and regenerated plantlets by rapd markers. Acta Hort., 530: 237-242.
    Direct Link  |  


  2. Soliman, S.S., A.B. Ahmed and M.M.M. Ahmed, 2003. Genetic comparison of Egyptian date palm cultivars (Phoenix dactylifera L.) by RAPD-PCR. Afr. J. Biotechnol., 2: 86-87.
    Direct Link  |  


  3. Kunert, K.J., M. Baaziz and C.A. Cullis, 2003. Techniques for determination of true-to-type date palm (Phoenix dactylifera L.) plants: A Literature review. Emirates J. Agric. Sci., 15: 1-16.
    CrossRef  |  Direct Link  |  


  4. Tisserat, B., 1984. Propagation of date palms by shoot tip cultures. HortScience, 19: 230-231.
    Direct Link  |  


  5. Veramendi, J. and L. Navarro, 1996. Influence of physical conditions of nutrient medium and sucrose on somatic embryogenesis of date palm. Plant Cell, Tissue Organ Culture, 45: 159-164.
    CrossRef  |  


  6. Corniquel, B. and L. Mercier, 1994. Date palm (Phoenix dactylifera L.) cultivar identification by RFLP and RAPD. Plant Sci., 101: 163-172.
    Direct Link  |  


  7. Diaz, S., C. Pire and J. Ferrer, 2003. Identification of Phoenix dactylifera L. varieties based on Amplified Fragment Length Polymorphism (AFLP) markers. Cell. Mol. Biol. Lett., 8: 891-899.
    Direct Link  |  


  8. Taylor, P.W.J., J.R. Geijskes, H.L. Ko, T.A. Fraser, R.J. Henry and R.G. Birch, 1995. Sensitivity of random amplified polymorphic DNA analysis to detect genetic change in sugarcane during tissue culture. Theor. Applied Genet., 90: 1169-1173.
    Direct Link  |  


  9. Anand, A., 2003. Studies on Genetic Stability of Micropropagated Plants and, Reintroduction in an Endemic and Endangered Taxon: Syzygium travancoricum Gamble (Myrtacea). J. Plant Biotechnol., 5: 201-207.


  10. Murashige, T. and F. Skoog, 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant., 15: 473-497.
    CrossRef  |  Direct Link  |  


  11. Al-Khayri, J.M., 2001. Optimization of biotin and thiamine requirements for somatic embryogenesis of date palm (Phoenix dactylifera L.). In vitro Cell. Dev. Biol.-Plant, 37: 453-456.
    CrossRef  |  Direct Link  |  


  12. Al-Khayri, J.M. and A.M. Al-Bahrany, 2001. Silver nitrate and 2-isopentyladenine promote somatic embryogenesis in date palm (Phoenix dactylifera L.). Scientia Horticulturae, 89: 291-298.
    CrossRef  |  Direct Link  |  


  13. Al-Khayri, J.M. and A.M. Al-Bahrany, 2004. Genotype-dependent in vitro response of date palm (Phoenix dactylifera L.) cultivars to silver nitrate. Scientia Horticulturae, 99: 153-162.
    CrossRef  |  Direct Link  |  


  14. Dellaporta, S.L., J. Wood and J.B. Hicks, 1983. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep., 1: 19-21.
    CrossRef  |  Direct Link  |  


  15. Waugh, R. and W. Powell, 1992. Using RAPD markers for crop improvement. TIBTECH, 10: 186-191.
    Direct Link  |  


  16. Nei, M. and W.H. Li, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA., 76: 5269-5273.
    CrossRef  |  PubMed  |  Direct Link  |  


  17. Rani, V., A. Parida and S.N. Raina, 1995. Random Amplified Polymorphic DNA (RAPD) markers for genetic analysis in micropropagated plants of Populus deltoides Marsh. Plant Cell Rep., 14: 459-462.
    CrossRef  |  Direct Link  |  


  18. Parani, M., A. Anand and A. Parida, 1997. Application of RAPD fingerprinting in selection of micropropagated plants of Piper longum for conservation. Curr. Sci., 73: 81-83.
    Direct Link  |  


  19. Soniya, E.V., N.S. Banerjee and M.R. Das, 2001. Genetic analysis of somaclonal variation among callus-derived plants of tomato. Curr. Sci., 80: 1213-1215.
    Direct Link  |  


  20. Hall, D.W., 1970. Handling and Storage of Food Grains in Tropical and Subtropical Areas. FAO, Rome, Italy, pp: 53-55


  21. Khattak, S.U., H.A.Q. Almarwani, N. Hussain , M. Anwar and S.K. Khalil, 1993. Screening of new wheat genotype against Khapra beetle, Trogoderma granarium Everts. Science International Proceeding, pp: 154-156.


  22. MFAL., 2004. Agricultural statistics of Pakistan 2003-04. Ministry of Food, Agriculture and Livestock, Islamabad, pp: 10-11.


©  2023 Science Alert. All Rights Reserved